
A note on asynchronous Projective Splitting in Julia

Utkarsh Sharmaa, Kashish Goela, Aryan Duaa, Sebastian Pokuttab, Zev
Woodstockb,c

aDepartment of Computer Science and Engineering,
I.I.T. Delhi, Hauz Khas, New Delhi, 110016, India

bDepartment of AI in Society, Science, and Technology,
Zuse Institute Berlin, Takustr. 7, 12045, Berlin, Germany

cDepartment of Mathematics and Statistics, James Madison University, MSC 1911,
60 Bluestone Dr., Harrisonburg, Virginia, 22807, USA

Abstract

While it has been mathematically proven that Projective Splitting (PS) algo-
rithms can converge in parallel and distributed computing settings, to-date,
it appears there were no open-source implementations of the full algorithm
with asynchronous computing capabilities. This note fills this gap by pro-
viding a Julia implementation of the asynchronous PS algorithm of Eckstein
and Combettes for solving fully nonsmooth convex optimization problems.
Our methodology includes inter-operability with existing packages within the
Julia ecosystem, and we also document observations from running this algo-
rithm asynchronously on problems in image processing and machine learning.

Keywords: nonsmooth, convex, optimization, asynchrony, parallel
computing

1. Introduction

The rapid advancement of data-driven applications have intensified the
need for efficient algorithms capable of addressing first-order nonsmooth op-
timization problems, e.g., those appearing in machine learning, signal pro-
cessing, and operations research [1, 2, 3, 4]. Despite the critical importance
of first-order nonsmooth optimization, the landscape of available algorithms
remains somewhat limited, particularly when considering algorithms which
are both (A) proven to converge and (B) designed to leverage parallel and
distributed computing environments. In this article, we consider a promising

Preprint submitted to Journal of Parallel and Distributed Computing December 2024

recent class of algorithms which satisfies both of these criterion – projective
splitting (PS) algorithms.

In 2008, Eckstein and Svaiter proposed the projective splitting framework
for finding a zero of a sum of maximally monotone operators, and in particu-
lar, for minimizing a sum of nonsmooth convex functions [5]. In recent years,
projective splitting algorithms have received attention from the optimization
community, with many variants and new convergence rates being established
[6, 7, 8]. Perhaps one of the first major theoretical breakthroughs for this
class of algorithm came in 2016–2018, when it was proven that allowing for
parallelized updates with bounded asynchrony is still guaranteed to converge
to a solution of the mathematical optimization problem at-hand [9, 10]. In
some sense, this capability sets projective splitting algorithms apart from
other convex optimization algorithms: Even if we only consider the syn-
chronous version of PS, there are several desirable properties exhibited by
PS (e.g., block-iterativeness, fully nonsmooth capabilities, and no require-
ment of linear operator bounds)which, it seems, do not simultaneously occur
for other algorithms [11]. Hence, in combination with the benefits outlined in
[11] (whose scope only involved synchronous algorithms), the capability for
asynchrony sets projective splitting apart from other algorithms. Its full po-
tential was used to develop a specialized algorithm for the task of progressive
hedging in [12]. However, aside from the specialized application in [12], it ap-
pears that all of the computational experiments involving projective splitting
algorithms thus-far have focused on the synchronous case [11, 8]. Further-
more, there is a lack of literature discussing general implementation of the
algorithms theoretically proven to converge in [9, 10]. For instance, PS is
proven to converge for a wide range of hyperparamers; however, for some ap-
plications, the hyperparameters can drastically influence performance. Our
main goal of this article is to (A) fill this gap in the literature by sharing
our experience in using asynchronous algorithms on applications in classi-
fier training and image processing, and (B) provide an open-source software
implementation of the asynchronous parallel PS algorithm of [10].

1.1. Literature Review

One computational study was performed by [11], where it was established
that the synchronous algorithms [13] and [10] (in synchronous mode) appear
to be the only two methods with certain desirable properties for mathematical
optimization (e.g., the abilities to fully split the mathematical optimization

2

problem, handle nonsmoothness, and omit estimates for the norm of the lin-
ear operators). It was shown that, in several applications in machine learning
and image processing, [10] appears to out-perform [13] in terms of wall-clock
time. However, the experiments in [11] were entirely for the synchronous
version of the projective splitting algorithm in [10]. A more recent variant
of projective splitting is also proven to allow for parallel block-asynchronous
updates [8]. While the article includes very impressive experiments, it again
does not study the impact of asynchrony.

It appears that the only current implementation of projective splitting
with asynchrony implemented is for the specific application to the progressive
hedging method of Rockafellar and Wets [12]. The method studied in [12],
which is a special case of [9, 10], is shown to perform exceedingly well for
this particular application. This work is encouraging for us to develop a
general software implementation of [10] with asynchrony for the use in all
applications, not just that of progressive hedging.

2. Background

We begin with preliminaries; for further background, see [14].

2.1. Mathematical Optimisation

Let H be a real, finite dimensional Hilbert Space with norm ∥·∥ and inner
product ⟨· | ·⟩. We define the extended real line [−∞,+∞] as (−∞,∞) ∪
{−∞,+∞}. For algebra on the extended real line, for the purposes of opti-
misation, we are mainly concerned with defining addition, a binary operator
such that for x ∈ R, x+∞ = ∞ and ∞+∞ = ∞.

For f : H → [−∞,+∞], we are interested in finding

argmin
x∈H

f(x)

Definition 2.1. The proximity operator Prox γf (x) of a function f : H →
[−∞,+∞] at point x with parameter γ > 0 is defined as:

Prox γf (x) = argmin
y∈H

{
f(y) +

1

2γ
∥y − x∥22

}
.

The simplest example of using proximity operators for minimisation is per-
haps [15] showing the sequence formed by the recursive application of Prox γf

3

converges to a minimizer of f . As is well-known in the optimization com-
munity, computing Prox Σfi , i.e., the proximity operator for the sum Σfi,
is oftentimes computationally expensive or intractable; on the other hand,
evaluating the individual operators (Prox fi)i∈I is far easier. Minimising sums
via the use of the individual proximity operators is called splitting.

We implement Algorithm 4 of [10] which, in addition to being a splitting
algorithm, is also block-activated, and asynchronous. For minimising the
sum of functions Σfi for i ∈ {1, ...,m}, computing Prox γfi for each i, may
still be prohibitively slow. Block-activated (or block-iterative) algorithms ac-
tivate a subset In ⊂ {1, ...,m} of the proximity operators, during the nth

iteration. Asynchrony in our algorithm allows us to compute proximity op-
erators Prox γfi for i ∈ In+1 without waiting for the proximity operators to
be computed in In.

2.2. Notation and problem formulation

Our notation and definitions are standard in continuous optimization; for
further background see, e.g., [14]. We will use H to represent a Hilbert Space
with inner product ⟨· | ·⟩ and ∥ · ∥ =

√
⟨· | ·⟩. For most problems our H will

be Rn with inner product as the usual Euclidean dot product. The direct
sum is defined as

⊕m
i=1 Hi = H1 × . . . × Hm, where Hi represents the ith

Hilbert space. The inner product on the direct sum is defined as
⟨(xi)

m
i=1, (yi)

m
i=1⟩ =

∑m
i=1 ⟨xi, yi⟩Hi

where (xi)
m
i=1, (yi)

m
i=1 ∈

⊕m
i=1Hi. The set

of functions from H to [−∞,+∞] that are convex, lower-semicontinuous,
and proper is denoted Γ0(H).

Our implementation of [10] minimises an objective function of the follow-
ing form

minimize
(xi)i∈I∈

⊕
Hi

∑
i∈I

fi(xi) +
∑
k∈K

gk

(∑
i∈I

(Lki · xi)
)

(1)

where fi : Hi → R with fi ∈ Γ0(Hi) and gk : Gk → R with gk ∈ Γ0(Gk).
(Hi)i∈I and (Gk)k∈K are real Hilbert spaces with I = {1, ..,m}, K = {1, .., p}
and Lki : Hi → Gk are linear operators ∀k ∈ K, i ∈ I. From here on, we will
use gk(x) to represent the splitting functions that take in a linear combina-
tion of transformed xi as their inputs.

4

2.3. The variational Combettes-Eckstein projective splitting algorithm

The variational Combettes-Eckstein projective splitting algorithm is proven
to converge under the following assumptions [10].

Assumption 2.2. For every i ∈ I and every k ∈ K, let (ci(n))n∈N and
(dk(n))n∈N be the sequences in N that represent the most recent iterations for
which (A) computations Prox fi or Prox gk were respectively launched, and
(B) their computation has completed by the current iteration n.

(i) A solution to (1) exists.

(ii) For every i ∈ I and k ∈ K, we have fi ∈ Γ0(H) and gk ∈ Γ0(G).1
(iii) There exists a strictly positive integer M such that

∀n ∈ N,
n+M−1⋃
j=n

Ij = I and
n+M−1⋃
j=n

Kj = K. (2)

(iv) There exists a positive integer D such that for every iteration n ∈ N,
and all indices i ∈ I, k ∈ K, we have

n−D ≤ ci(n) ≤ n and n−D ≤ dk(n) ≤ n. (3)

(v) The hyperparameters γi,n and µk,n are bounded away from 0 and ∞.
That is,

0 < lim inf
n→∞

γi,n ≤ lim sup
n→∞

γi,n < ∞, (4)

0 < lim inf
n→∞

µk,n ≤ lim sup
n→∞

µk,n < ∞. (5)

Here, (iii) ensures that for some positive integer M , every M consecutive
blocks cover the entire set. Further, (iv) ensures that at any current iteration,
no prox computation that is left is older than D.

1usually H and G are of the form
⊕m

i=1 Rni

5

Algorithm 1 Combettes-Eckstein Algorithm [10]

Require: I0 = {1, . . . ,m} and K0 = {1, . . . , p}. Suppose Assumption 2.2
holds and (ci(n))n∈N and (dk(n))n∈N are sequences in N as defined in
2.2. For every i ∈ {1, . . . ,m} and every k ∈ {1, . . . , p}, let {γi,n, µk,n} ⊂
]0,+∞[, xi,0 ∈ Hi, and v∗k,0 ∈ Gk.

1: for n = 0, 1 to . . . do
2: λn ∈]0, 2[
3: if n > 0 then
4: Select ∅ ̸= In ⊂ {1, . . . ,m} and ∅ ̸= Kn ⊂ {1, . . . , p}
5: end if
6: for i ∈ In do
7: x∗

i,ci(n)
= xi,ci(n) − γi,ci(n)

∑p
k=1 L

∗
k,iv

∗
k,ci(n)

8: ai,n = Prox γi,ci(n)fix
∗
i,ci(n)

9: a∗i,n = γ−1
i,ci(n)

(x∗
i,ci(n)

− ai,n)
10: end for
11: (ai,n, a

∗
i,n)i∈{1,...,m}∖In = (ai,n−1, a

∗
i,n−1)i∈{1,...,m}∖In

12: for k ∈ Kn do
13: y∗k,n = µk,dk(n)v

∗
k,dk(n)

+
∑m

i=1 Lk,ixi,dk(n)

14: bk,n = Prox µk,dk(n)gky
∗
k,n

15: b∗k,n = µ−1
k,dk(n)

(y∗k,n − bk,n)
16: end for
17: (bk,n, b

∗
k,n)k∈{1,...,p}∖Kn = (bk,n−1, b

∗
k,n−1)k∈{1,...,p}∖Kn

18: (tk,n)k∈{1,...,p} = (bk,n −
∑m

i=1 Lk,iai,n)k∈{1,...,p}
19: (t∗i,n)i∈{1,...,m} = (a∗i,n +

∑p
k=1 L

∗
k,ib

∗
k,n)i∈{1,...,m}

20: τn =
∑m

i=1 ∥t∗i,n∥2 +
∑p

k=1 ∥tk,n∥2
21: if τn > 0 then
22: πn =

∑m
i=1

(
⟨xi,n | t∗i,n⟩ − ⟨ai,n | a∗i,n⟩

)
+
∑p

k=1

(〈
tk,n | v∗k,n

〉
−
〈
bk,n | b∗k,n

〉)
23: end if
24: if τn > 0 and πn > 0 then
25: θn = λnπn/τn
26: (xi,n+1)i∈{1,...,m} = (xi,n − θnt

∗
i,n)i∈{1,...,m}

27: (v∗k,n+1)k∈{1,...,p} = (v∗k,n − θntk,n)k∈{1,...,p}
28: else
29: (xi,n+1)i∈{1,...,m} = (xi,n)i∈{1,...,m}
30: (v∗k,n+1)k∈{1,...,p} = (v∗k,n)k∈{1,...,p}.
31: end if
32: end for

6

Theorem 2.3 ([10, Theorem 5]). Consider the problem of (1) using Al-
gorithm 1 under Assumptions 2.2. Then the sequences xn = (xi,n)i∈I and
an = (ai,n)i∈I converge to a solution of (1).

3. Methodologies

We engineered our application to be compatible with Julia 1.9.0 and
higher versions. It is compatible with any proximal operators of the type
defined in ProximalOperators.jl2. We also allow for usage of custom prox
operators for complex functions in the format prescribed by the library wher-
ever needed. To handle asynchronous programming, we make use of Julia’s
Distributed3 library, spawning P processors and cyclically assigning prox
computations over them.

The code requires the following inputs

(i) m, p : to describe the blocks I = [m], K = [p].

(ii) (fi)1≤i≤m, (gk)1≤k≤p : the definitions for functions corresponding to (1).
The prox computation for non-standard functions can also be added in
the format prescribed by ProximalOperators.jl.

(iii) L : Abstract matrix consisting of operators Lki used inside (1). The
operators Lki can be input either as matrices or as functions. We add
support of LinearAlgebra.jl4 for the use of these operators.

(iv) L∗ : Abstract matrix consisting of the adjoint operators L∗
ki.

(v) D : the maximum delay allowed in iterations. As defined in Assump-
tion 2.2.

(vi) In, Kn : in the form of functions that return the corresponding blocks
for the nth iteration.

(vii) γi,n, µi,n : In the form of functions generate gamma(i,n) and
generate mu(i,n).

We implement the algorithm to be able to handle inputs with variable
sizes i.e., for x ∈

⊕m
i=1Hi, the input can belong to

⊕m
i=1Rki where ki can

be all different. The L matrix consisting of Lki operators mentioned in the
original equation, can be inputted as a matrix of operators of the form of

2https://juliafirstorder.github.io/ProximalOperators.jl/latest/
3https://docs.julialang.org/en/v1/stdlib/Distributed/
4https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/

7

https://juliafirstorder.github.io/ProximalOperators.jl/latest/
https://docs.julialang.org/en/v1/stdlib/Distributed/
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/

both - matrices and functions. We allow this flexibility so that when Lki

operator is a matrix, the adjoints can be simply handled as the transpose;
on the other hand, when inputting operators as a function which computes
matrix vector products, a means to compute of their adjoint operators (L∗

ki)
must be provided.

The blocks (In), where n is the iteration count, can be described by the
user as a function of n. We provide standard block functions (In)n∈N (for
|I| = m) such as:

(i) Full activation: In = I.

(ii) Cyclic activation: In = {n mod m}.
(iii) Cyclic 1

M
activation : In = {k, k + 1, ..., k + ⌊ (n−1)m

M
⌋ − 1} with appro-

priate k to ensure ∪M
n=1In = I, In+M = In.

We also provide mechanisms to record observations such as ||xn − xn−1||,
||xn − x∞||, function values and more over - epochs (refer Remark 3.1 for
definition), iterations or prox-calls. These quantities are used to estimate
optimality of the current iterate, speed of convergence and compare relative
optimality respectively over different variables. We used x2∗total iters for
approximating x∞ by default (but this value can easily be modified by the
user).

Remark 3.1. We call one epoch as the set of iterations during which every
prox computation for each function in (fi)i∈I and (gk)k∈K has been performed
at least once.

4. Experiment Setup and Results

Two problem settings (Sections 4.1–4.2) were used in our experiments
(Sections 4.3–4.4). Computations were performed on a Dell PowerEdge R470
system, running Linux with HPC jobs managed by slurm, equipped with 1500
GB of RAM, 24 cores, and 48 threads. The system runs on Intel(R) Xeon(R)
Gold 6246 processors. The implementation and experimentation code can be
found in our repository https://github.com/zevwoodstock/AsyncProx/.

4.1. Problem 1: Sparse linear classifier training

We consider the classification problem of [16], known as the latent group
lasso, or lasso with group overlap. Let {G1, . . . , Gm} be a covering of {1, 2, . . . , d}.

8

https://github.com/zevwoodstock/AsyncProx/

Define X = {x1, . . . , xm|xi ∈ Rd, support(xi) ⊂ Gi}. The ideal classification
vector is ỹ = Σm

i=1xi where (xi)
m
i=1 is a solution of

argmin
x1,x2,...,xm∈X

m∑
i=1

∥xi∥2 +
p∑

k=1

gk

(
m∑
i=1

⟨xi,µk⟩

)
, (6)

where µk ∈ Rd, gk(ξ) = 10max{0, 1−βkξ}, where βk = ωksign(⟨y | µk⟩) is the
kth measurement of the true vector y ∈ Rd (d = 10, 000). To generate µk, we
sampled v ∼ N (0, Id), where Id is the identity matrix, and set µk = v/∥v∥2.
The values ωk ∈ {−1, 1} are selected so that 25% of them (selected uniformly
at random) are misclassified. The number of measurements made on true
value y that we want to approximate is p = 1000. There are m = 1429
groups. For every i ∈ {1, ...,m− 1} each Gi has 10 consecutive integers and
an overlap with Gi+1 of 3.

We observe that the support vectors xi are sparse with only |Gi| = 10
non-zero elements out of d total. To improve the memory requirements for
this problem, xi is replaced by x̃i in (6) where x̃i ∈ R10 and X̃ is the set
containing the compressed support vectors x̃i. Thus we can use F : R10 → Rd

such that ∀i ∈ {1, ...,m−1}, F (x̃i) = xi, i.e., it pads x̃i with zeros.consisting
To construct this and an instance of Equation (1), we rewrite such that

(x̃i)
m
i=1 is given by

argmin
x̃1,...,x̃m∈X

m∑
i=1

∥x̃i∥2 +
p∑

k=1

gk (⟨yk,µk⟩) , (7)

where x̃i ∈ R10, µk ∈ Rd and yk =
∑

i∈I(Lki · x̃i), Lki : R10 → Rd such that
Lkix̃i = F (x̃i). This can then be formulated into (1) by setting fi : Hi =
R10 → (−∞,∞] and gk : Gk = Rd → (−∞,∞] such that, for every 1 ≤
i ≤ m and every 1 ≤ k ≤ p, fi : xi 7→ ∥xi∥2 and gk : yk 7→ 10max{0, 1 −
βk⟨yk, µk⟩}, where yk =

∑
i∈I(Lki · xi) and Lki = F . We can check that the

adjoint of our Lki operator is L
∗
ki : Rd → R10 such that for y ∈ Rd, L∗

ki(y) =
(y7i+1, y7i+2, ..., y7i+10).

The operators Prox fi are available in ProximalOperators.jl, and Prox gk

are calculated using [14, Proposition 24.14].

4.2. Problem 2: Image Recovery

We consider a Stereoscopic Image Recovery problem akin to [17, Sec-
tion 4.2] where, instead of restoring a pair of images, we restore a series of

9

M images {xi}1≤i≤M , xi ∈ RN . Noisy degraded versions are available via

zi = Lxi + wi, wi ∼ N (0, σ2I),

where L blurs via convolution with a 5 × 5 averaging kernel with equal
weights, and wi is additive Gaussian noise with mean zero and variance σ2 =
0.0001. The stereoscopy xi ≈ Dixi+1 is modeled by successive horizontal
shift operators Di : RN 7→ RN ∀i ∈ [M − 1] with estimated shift values. We
seek to solve

argmin
xi∈RN ,1≤i≤M

M∑
i=1

N∑
k=1

ϕi,k(⟨xi|ei,k⟩)+
M∑
i=1

1

2σ2
||Lxi−zi||2+

M−1∑
i=1

v

2
||xi−Dixi+1||2,

(8)
where (ei,k)1≤k≤N are orthonormal symlet wavelet basis vectors and ϕi,k =
µi,k| · |. 5 This can be formulated into our optimisation algorithm’s input
as follows. Let Hi = RN , Gi = RN , fi(xi) = |⟨ (µi,k)k∈N |DWT(xi)⟩| for
1 ≤ i ≤ M , and

gk(yk) =

{
1

2σ2 ||yk − zi||2 for 1 ≤ k ≤ M,
ϑ
2
||yk||2 for M + 1 ≤ k ≤ 2M − 1,

where DWT is the Discrete Wavelet Transform Operator. The proximal
operator for f is computed as IDWT

(
prox∥·∥1(DWT(x))

)
, where prox∥·∥1

denotes the soft-thresholding operation and IDWT represents the inverse
discrete wavelet transform.

Let L be the degradation operator and D be the disparity matrix. Then,

for 1 ≤ k ≤ M, Lki =

{
L if i = k

0 otherwise
(9)

for M + 1 ≤ k ≤ 2M − 1, Lki =


Id if i = k

−Di−k if i = k + 1

0 otherwise

(10)

5In our experiment, we choose µi,k = 1.

10

(1a) (2a) (3a)

(1b) (2b) (3b)

(1c) (2c) (3c)

(1d) (2d) (3d)

Figure 1: Original stereoscopic images (column 1), Degraded stereoscopic images (column
2) and their corresponding restored images (column 3).

11

We ran our algorithm for 300 iterations over the formulation described
by (8). The images in Image 1 were taken after roughly equal horizontal
displacement. The disparity matrix for each pair was thus found by trial and
error.

4.3. Experiment 1: Synchrony versus asynchrony

We performed an experiment to determine if asynchrony can provide a
speedup in practice. We also compared the performance of the asynchronous
run of our implementation over variable number of processors.

4.3.1. Setup

We ran the algorithm on Problem 1 (Section 4.1) and set D to 0 for
the synchronous case and 5 for asynchronous. This variable describes the
maximum delay (in terms of number of iterations) that is allowed before
prox evaluation, i.e., the heaviest part of our computation, is completed.
To simulate latencies, an artificial delay t associated with prox computation
was added with t ∼ U(0, 0.5) and added variance e ∼ N (0, 0.005). We ran

the algorithm for 10 iterations (which was sufficient to get ||xn−xn−1||2
||xn−x0||2 ≈ 10−2)

with blocks In = [1,m], i.e., full activation and µi = 0.42 − 0.01i, γi = 1.
Results were averaged over 10 runs with x∞ being taken as the position
reached value after double the total iterations.

4.3.2. Results

P D Sync/Async ||f(xmin)−f(x∞)||2
||f(x0)−f(x∞)||2

||x−x∞||2
||x0−x∞||2 Time

2 0 Sync 0.00149 0.500 185.971s
2 5 Async 0.00131 0.348 138.484s
3 0 Sync 0.00173 0.441 232.469s
3 5 Async 0.00142 0.362 130.118s

Table 1: Comparison of Asynchronous vs Synchronous run

Here, P is the number of processors used and D is the maximum allowed
delay (see Assumption 2.2). We see from Table 1 that the Asynchronous run
takes considerably less time while also approaching optimality just as well.
Table 2 presents the expected pattern of the optimal number of processors
that minimizes the time taken, beyond which the overhead from additional
processors begins to increase the total execution time. We expect this trend

12

P D Sync/Async ||f(xmin)−f(x∞)||2
||f(x0)−f(x∞)||2

||x−x∞||2
||x0−x∞||2 Time

2 5 Async 0.00131 0.348 138.484s
3 5 Async 0.00142 0.342 130.118s
4 5 Async 0.00154 0.349 132.552s
5 5 Async 0.00193 0.357 134.044s
6 5 Async 0.00142 0.361 135.634s
7 5 Async 0.00142 0.365 139.380s
8 5 Async 0.00142 0.363 144.286s

Table 2: Time taken for Async run with different number of Processors

to remain true in general, although the ideal number of processors will change
depending on the overhead due to parallelization, which is heavily dependent
upon the problem and machine architecture.

4.4. Experiment 2: Hyperparameter search

In this experiment, we try to find the best performing settings for the
hyperparameters γn and µn where n is the number of iterations. For a sin-
gle iteration, their values were taken to be constant for different Proximal
operators.

We first search to find the ideal value of µn = c1 and γn = c2, i.e., constant
w.r.t. n. This was done by performing a grid search over the logarithmic scale
followed by a ternary search between the two best performing orders. The
objective values for comparison were the function values for Problem 4.1 and
Problem 4.2 as two separate independent searches. We found that the values:
(µn = 0.332, γn = 0.0001), were the optimal values for Problem 4.1 for full
activation with variation in µn being almost the sole contributor towards
the objective value reached over 10 iterations. For 0.1 activation, the values
were (µn = 0.352, γn = 0.0001), i.e., almost entirely same. Problem 4.2,
run over 300 iterations showed the ideal constant values being of the order
(µn = 0.1, γn = 0.0001) for various activations, with µn, again being the
dominant factor. A consistent trend showed the order of µn = 10−1 yielded
good results. Although we conducted our grid search on the synchronous
case, we found that in practice it yields similar performance improvements
for asynchronous algorithms as well, so we use the same hyperparameters for
both.

Next, we also compared the performance of different variations over n,

13

specifically µn, γn of the form -

(i) linear decrease (a− bn)

(ii) constant (c)

(iii) non-linear decrease (a− b
n
)

(iv) uniform random (∼ U
[
ϵ, 1

ϵ

]
)

Results were compiled with the same metrics as described above and they
showed that linear decrease (i) performed the best with hyperparameter val-
ues µn = max(0.01, 0.42 − 0.03n) for Problem-4.1. This was followed by
non-linear decrease (iii) at a close second. Our findings suggest that decreas-
ing strategies for hyperparameters tend to outperform constant ones, while
increasing strategies perform poorly.

5. Data Statement

The data (images) used to replicate these experiments is publically avail-
able and can be found at https://github.com/zevwoodstock/AsyncProx/.

References

[1] F. Bach, R. Jenatton, J. Mairal, G. Obozinski, 2012. doi:10.1561/2200000015.

[2] A. Chambolle, T. Pock, An introduction to continuous optimization for imaging, Acta
Numerica 25 (2016) 161–319. doi:10.1017/S096249291600009X.

[3] P. L. Combettes, J.-C. Pesquet, Proximal Splitting Methods in Signal Process-
ing, Springer New York, New York, NY, 2011, pp. 185–212. doi:10.1007/

978-1-4419-9569-8_10.
URL https://doi.org/10.1007/978-1-4419-9569-8_10

[4] M. Hintermüller, G. Stadler, An infeasible primal-dual algorithm for total bounded
variation–based inf-convolution-type image restoration, SIAM Journal on Scientific
Computing 28 (1) (2006) 1–23. arXiv:https://doi.org/10.1137/040613263, doi:
10.1137/040613263.
URL https://doi.org/10.1137/040613263

[5] J. Eckstein, B. F. Svaiter, A family of projective splitting methods for the sum of two
maximal monotone operators, Mathematical Programming 111 (2008) 173–199.

[6] P. R. Johnstone, J. Eckstein, Convergence rates for projective splitting, SIAM Journal
on Optimization 29 (3) (2019) 1931–1957.

[7] P. R. Johnstone, J. Eckstein, Single-forward-step projective splitting: exploiting co-
coercivity, Computational Optimization and Applications 78 (1) (2021) 125–166.

[8] P. R. Johnstone, J. Eckstein, Projective splitting with forward steps, Mathematical
Programming (2022) 1–40.

14

https://github.com/zevwoodstock/AsyncProx/
https://doi.org/10.1561/2200000015
https://doi.org/10.1017/S096249291600009X
https://doi.org/10.1007/978-1-4419-9569-8_10
https://doi.org/10.1007/978-1-4419-9569-8_10
https://doi.org/10.1007/978-1-4419-9569-8_10
https://doi.org/10.1007/978-1-4419-9569-8_10
https://doi.org/10.1007/978-1-4419-9569-8_10
https://doi.org/10.1137/040613263
https://doi.org/10.1137/040613263
http://arxiv.org/abs/https://doi.org/10.1137/040613263
https://doi.org/10.1137/040613263
https://doi.org/10.1137/040613263
https://doi.org/10.1137/040613263

[9] J. Eckstein, A simplified form of block-iterative operator splitting and an asyn-
chronous algorithm resembling the multi-block alternating direction method of mul-
tipliers, Journal of Optimization Theory and Applications 173 (1) (2017) 155–182.

[10] P. L. Combettes, J. Eckstein, Asynchronous block-iterative primal-dual decomposi-
tion methods for monotone inclusions, Mathematical Programming 168 (2018) 645–
672.

[11] M. N. Bui, P. L. Combettes, Z. C. Woodstock, Block-activated algorithms for multi-
component fully nonsmooth minimization, in: ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2022, pp.
5428–5432.

[12] J. Eckstein, J.-P. Watson, D. L. Woodruff, Projective hedging algorithms for multi-
stage stochastic programming, supporting distributed and asynchronous implemen-
tation, Operations Research (2023).

[13] P. L. Combettes, J.-C. Pesquet, Stochastic quasi-fejér block-coordinate fixed point
iterations with random sweeping, SIAM Journal on Optimization 25 (2) (2015) 1221–
1248.

[14] H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory
in Hilbert Spaces, Springer Science+Business Media, 2011.

[15] B. Martinet, Régularisation d’inéquations variationnelles par approximations suc-
cessives, Revue Française D’automatique, Informatique, Recherche Opérationnelle 3
(1970) 154–158.

[16] P. L. Combettes, A. M. McDonald, C. A. Micchelli, M. Pontil, Learning with optimal
interpolation norms, Numerical Algorithms 81 (2019) 695–717.

[17] P. L. Combettes, L. E. Glaudin, Proximal activation of smooth functions in splitting
algorithms for convex image recovery, SIAM Journal on Imaging Sciences 12 (2019)
1905–1935.

Acknowledgments: This research was partially supported by the DFG Clus-
ter of Excellence MATH+ (EXC-2046/1, project id 390685689) funded by the
Deutsche Forschungsgemeinschaft (DFG) as well as the Research Campus MODAL
funded by the German Federal Ministry of Education and Research (BMBF) (fund
numbers 05M14ZAM, 05M20ZBM).

Conflict of interest statement: We declare no conflict of interest.

Author Credit Statement: This work was predominantly carried out by US,

KG, and AD (with contribution level in that order) under the primary supervision

of ZW and secondary supervision of SP.

15

	Introduction
	Literature Review

	Background
	Mathematical Optimisation
	Notation and problem formulation
	The variational Combettes-Eckstein projective splitting algorithm

	Methodologies
	Experiment Setup and Results
	Problem 1: Sparse linear classifier training
	Problem 2: Image Recovery
	Experiment 1: Synchrony versus asynchrony
	Setup
	Results

	Experiment 2: Hyperparameter search

	Data Statement

