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Abstract

We prove that the block-coordinate Frank-Wolfe (BCFW) algorithm converges with state-of-
the-art rates in both convex and nonconvex settings under a very mild “block-iterative” assump-
tion, newly allowing for (I) progress without activating the most-expensive linear minimization
oracle(s), LMO(s), at every iteration, (II) parallelized updates that do not require all LMOs, and
therefore (III) deterministic parallel update strategies that take into account the numerical cost
of the problem’s LMOs. Our results apply for short-step BCFW as well as an adaptive method
for convex functions. New relationships between updated coordinates and primal progress are
proven, and a favorable speedup is demonstrated using FrankWolfe.jl.
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1 Introduction

Given a smooth function f that maps from a finite Cartesian product of m real Hilbert spaces
H :=

⊕m
i=1Hi to R and a product of nonempty compact convex subsets×m

i=1Ci ⊂H with Ci ⊆ Hi,
we seek to solve the following problem

minimize
x∈C1×...×Cm

f(x), (1)

which has applications in matrix factorization, support vector machine training, sequence labeling,
intersection verification, and more [5, 8, 15, 18, 19, 26, 29, 30]. Frank-Wolfe (F-W), also known as
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conditional gradient, methods have become an increasingly popular choice for solving (1) on large-
scale problems, because their method of enforcing set constraints, namely the linear minimization
oracle, is oftentimes computationally faster than other techniques such as projection algorithms
[12]. A linear minimization oracle LMOC for a compact convex set C ⊆H, computes for any linear
objective c ∈ H, a point in Argminx∈C 〈c | x〉. The oracle approach is advantageous for problems
such as the maximum matching problem [7, 24], where efficient linear minimization is possible
despite large linear program formulations; this also makes reduction between problems easier [9].

Although (1) can be solved via the classical Frank-Wolfe algorithm, it would necessitate that, at
every iteration, the linear minimization oracle for C1 × . . . × Cm is evaluated. This step can cause
a computational bottleneck, since

LMOC1×...×Cm(x
1, . . . ,xm) = (LMOC1 x

1, . . . ,LMOCm xm), (2)

i.e., evaluating the Cartesian LMO amounts to computing m separate LMOs. To avoid this slow-
down, there has been an increasing effort over the last decade to reduce the per-iteration com-
plexity required by classical Frank-Wolfe algorithms while maintaining theoretical guarantees of
convergence [2, 5, 8, 18, 19, 29]. These benefits make performing a single iteration on larger-scale
problems more tractable, and oftentimes allow for the more efficient use of kilowatts in practice.

Here we are interested in improvements making use of the product structure of the feasible
region, which can later be combined with other improvement techniques to better use linear min-
imization, such as delaying updates via local acceleration [14], generalized self-concordant objec-
tive functions [10], and boosting, i.e., using multiple linear minimizations to choose a direction for
progress [11].

Perhaps the earliest work using the product structure of the feasible region was [21], which
proved that, for Armijo and exact line searches, asymptotic convergence to a solution of (1) could
be achieved by, at each iteration, only updating one component (also called coordinate) of the
iterate and thereby requiring one LMO evaluation. In particular, [21] showed that convergence is
guaranteed as long as an essentially cyclic selection scheme is used, that is, as long as there exists
some K such that all m components are updated at least once over each consecutive K iterations.
In other words, the index i(t) of the component updated at iteration t ∈ N, satisfies

{i(t), . . . , i(t+K − 1)} = {1, . . . ,m}. (3)

About 17 years later, [2] significantly improved upon these results for the cyclic setting (K =
m), by (A) widening to a scope of many more Frank-Wolfe variants (e.g., adaptive steps, open-
loop predefined steps, and backtracking) and (B) deriving modern convergence rates. This cyclic
scheme has shown to be particularly useful with randomly shuffling the order of updating the
components for each cycle. In contrast to the deterministic methods, [18] showed that by selecting
uniformly at random the component to update in each iteration, one can also solve (1). Since then,
two methods have been proposed that select one component to update based on a suboptimality
criterion: the one in [19] is stochastic and selects the component via a non-uniform distribution,
while the Gauss-Southwell, or “greedy”, update scheme of [5] is deterministic. Such techniques
can provide improved per-iteration progress, although they are agnostic to the numerical costs of
the selected LMO.
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In contrast to singleton-update schemes, the vanilla Frank-Wolfe algorithm and several of its
modern variants [5, 29] are particularly suitable for updating several components of an iterate in
parallel, which can yield better per-iteration progress. In these block-iterative settings, at iteration
t ∈ N, a block It ⊂ {1, . . . ,m} of components are updated (possibly in parallel) while leaving the
remaining components in {1, . . . ,m} \ It unchanged. Updated components i ∈ It are modified
via a Frank-Wolfe subroutine which relies on evaluating LMOCi , and therefore the selection of It
has a great influence on the per-iteration cost of the algorithm. Some of the earliest results for
parallel block updated Frank-Wolfe algorithms again arise from [21], which proved convergence
(without rates) for parallel synchronous updates with the full updating scheme It = {1, . . . ,m} and
a uniform step size across all components1. As pointed out by [2], using a single step size in all
components can impede progress, since the relative scale between componentwise constraints can
be significant. The recent work [5] allowed for full updates with variable componentwise stepsizes,
also significantly improving convergence rates in certain settings.

However, outside of full-updates, it appears that only [29] allows for block-sizes larger than 1. In
particular, for a fixed block-size p, the results in [29] permit selecting the updated coordinates uni-
formly at random. This application is ideal when all LMOs are expected to require the same amount
of time, and p processor cores are available. However, unless all the operators (LMOCi)i∈{1,...,m} re-
quire similar levels of computational effort, there appear to be no other good options for leveraging
parallelism. In particular, regardless of the stepsizes considered, it appears that (prior to this work)
no block selection technique for a F-W algorithm allows block sizes to change between iterations,
and there are no deterministic rules which even allow for blocks It with sizes between 1 and m.
This poses a significant drawback from a computational perspective, because the current “state-of-
the-art” leaves very little customizability or adaptability in how the block-updates are selected. In
particular, a central goal of this work is to allow for the design of cost-aware update techniques
which take into account the relative numerical cost of the LMOs of a given problem, and utilize all
available processors at a given iteration.

Even though the Frank-Wolfe algorithm predates many methods which rely on proximity op-
erators, advances in block-coordinate proximal algorithms seem to have outpaced those in the
Frank-Wolfe literature. So, in this article we consider parallel and partial componentwise updates
for BCFW under the following assumption, which comes from the proximal-based literature [20].

Assumption 1.1. There exists a positive integer K such that, for every iteration t,

(∀i ∈ {1, . . . ,m}) i ∈
t+K−1⋃
k=t

Ik. (4)

We emphasize the flexibility of Assumption 1.1: in addition to allowing for the computation of
expensive LMOs at any (bounded) rate, Assumption 1.1 allows deterministic parallelized block-
updates of variable sizes, up to the user. Assumption 1.1 also unifies several existing selection
schemes. Below are some example use-cases.

1Although [21, Section 4] also contains results for more general selection schemes of It, they do not apply to the
Frank-Wolfe setting (see [21, Table 1]).
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(i) With the It singletons, this becomes the essentially cyclic selection scheme (3) of [21, 28]; if
additionally K = m, Assumption 1.1 becomes the cyclic scheme of [2].

(ii) With It = {1, . . . ,m}, this becomes the full selection method, also called parallel [5, 21].

(iii) If p processor cores are available, one can queue p many LMO operations to be performed in
parallel, hence satisfying Assumption 1.1 with K = dm/pe. This strategy is well-suited for
reducing processor wait times if the LMOs for the selected blocks require roughly the same
amount of computational time (which occurs, e.g., in [2, 19]).

(iv) If the operators (LMOCi)i∈{1,...,m} require drastically different levels of computational time
(e.g., where some LMOs are fast, while others require comparatively slower computations
such as eigendecomposing a large matrix or solving a large linear program), one can postpone
evaluating the most expensive LMOs, provided they are evaluated once every K iterations.
The experiments in Section 4 demonstrate that, by repeatedly iterating on the “cheaper” com-
ponents, one can nonetheless provide good per-iteration progress on the overall problem.2

(v) Assumption 1.1 also allows for a quasi-stochastic strategy: For all iterations from t to t+K−2,
use any stochastic selection technique; then, at iteration t +K − 1, additionally activate the
(potentially empty) set of components which were not selected by the stochastic method.

Contributions

Our main contributions are threefold. To the best of our knowledge, this article contains the first
result concerning converge of BCFW in the nonconvex case where the objective function has a
Lipschitz-continuous gradient and no extra assumptions. We are only aware of one work which ad-
dresses BCFW with nonconvex objectives, namely [5] establishes linear convergence under several
assumptions including a Kurdyka-Łojasiewicz-type inequality. As is standard in Frank-Wolfe meth-
ods, Theorem 3.3 proves that after t iterations, the algorithm is guaranteed to produce a point with
Frank-Wolfe gap (a quantity closely related to Clarke stationarity [6]) being at most O(1/

√
t). Sec-

ond, for the case of convex objective functions, anO(1/t) primal gap convergence rate is proven for
an adaptive step size version of BCFW which does not require a-priori smoothness estimation (The-
orem 2.5); in consequence, Corollary 2.8 establishes convergence for short-step BCFW with a rate
and constant which matches short-step FW [6, Theorem 2.2]. Third, throughout the entire article
we only assume the flexible block-activation scheme, Assumption 1.1, which unifies many previous
activation schemes for BCFW into one simple framework and allows for new block-selection strate-
gies, e.g., those available for some prox-based algorithms. On toy problems for which there is a
significantly disparate cost of linear minimization oracles, these new selection strategies are shown
to perform comparably, or even better than existing methods in iterations, gradient evaluations,
LMO evaluations, and time.

The remainder of the article is organized as follows. Section 1.1 details background and pre-
liminary results; Section 1.2 presents a general formulation of BCFW, a discussion on step size

2This strategy is reminiscent of the Shamanskii-type Newton/Chord algorithms that only perform numerically expen-
sive Hessian updates once over a finite sequence of iterations [17, 25].
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variants, and the common progress estimation for convex objective functions. Section 2 considers
convex objective functions and proves convergence under both adaptive step sizes and short-step
sizes. Section 3 proves a convergence guarantee for nonconvex objective functions with Lipschitz-
continuous gradients. Finally, Section 4 shows computational experiments.

1.1 Notation, standing assumptions, and auxiliary results

Let I := {1, 2, . . . ,m}, and we consider the direct sum H :=
⊕

i∈I Hi of real Hilbert spaces Hi.
We denote points of H by bold letters, and components in the direct sum by upper indices, i.e.,
x = (x1,x2, . . . ,xm) ∈ H with xi ∈ Hi. The inner product on H is 〈x | y〉H =

∑
i∈I 〈xi | yi〉Hi

,
yielding the norm identity ‖x− y‖2H =

∑
i∈I ‖xi− yi‖2Hi

. For notational convenience, we treat the
Hi as orthogonal subspaces of H, in particular, x =

∑
i∈I x

i. We will omit the subscripts H, Hi
from norms and scalar products; this will not cause ambiguity as all are restrictions of the ones on
H. For J ⊆ I, let xJ :=

∑
i∈J x

j be the part of x in the components Hi for i ∈ J . For i ∈ I, let
Ci be a nonempty compact convex subset of Hi. For J ⊂ I, let×i∈J Ci be the set of points x ∈ H
with xi ∈ Ci for all i ∈ J and xi = 0 for i /∈ J . Let DJ be the diameter of×i∈J Ci (treated as a
subset of

⊕
i∈J Hi ⊂H). We shall use the simplified notation Di := D{i} and D := DI .

Let f be a Fréchet differentiable function mapping from×i∈J Ci to R. We denote partial gradi-
ents by ∇Jf(x) := (∇f(x))J . For Lf > 0, a function f is Lf -smooth on a convex set C if

(∀x,y ∈ C) f(y)− f(x) ≤ 〈∇f(x) | y − x〉+
Lf
2
‖y − x‖2; (5)

which holds, e.g., if ∇f is Lf -Lipschitz continuous [6]. Recall that f is convex on a convex set C if

(∀x,y ∈ C) 〈∇f(x) | y − x〉 ≤ f(y)− f(x). (6)

For nonempty J ⊂ I and xJ ∈
⊕

i∈J Hi, the linear minimization oracle LMOJ(x
J) returns a point

in Argminv∈×i∈J Ci
〈xJ | v〉; also set LMOi := LMO{i}. A partial Frank-Wolfe gap is given by

(∀J ⊂ I)
(
∀x ∈×

i∈I
Ci

)
GJ(x) = 〈∇Jf(x) | xJ − LMOJ(∇Jf(x))〉, (7)

with Gi = G{i}. The Frank-Wolfe gap (F-W gap) of f over×i∈I Ci at x ∈H is given by

GI(x) := sup
v∈×i∈I Ci

〈∇f(x) | x− v〉 =
∑
i∈I

Gi(x). (8)

Note that, for every x ∈×i∈I Ci and every J ⊂ I, we have GJ(x) ≥ 0. The F-W gap vanishes at a
solution of (1) in the following sense [6]

x is a stationary point of minimize
x∈×i∈I Ci

f(x) ⇔

{
x ∈×i∈I Ci

GI(x) ≤ 0.
(9)

Before proceeding further, we gather several useful results.
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Lemma 1.2. Let (Ci)i∈I be nonempty compact convex subsets of real Hilbert spaces (Hi)i∈I , let
f :×i∈I Ci → R be convex, let J ⊂ I be nonempty, and let GJ be given by (7). Then,(

∀z ∈×
i∈I

Ci

)
GJ(z) ≥ f(z)− min

x∈×i∈I Ci

xI\J=zI\J

f(x) ≥ 0. (10)

Proof. Let x∗z ∈ ArgminxJ∈×i∈J Ci
f(xJ + zI\J). By (7) and optimality of the LMO, GJ(z) =

〈∇Jf(z) | zJ − LMOJ(∇Jf(z))〉 ≥ 〈∇Jf(z) | zJ − x∗z〉 = 〈∇f(z) | z − (x∗z + zI\J)〉, so using con-
vexity yields (10).

We will use the perspective function ρ of a Huber loss, to simplify handling the minimum in the
short step formula (short) below.

ρ : R× R>0 → R : (x, b) 7→

{
|x| − b

2 if |x| ≥ b
|x|2
2b if |x| ≤ b.

(11)

Fact 1.3. The function ρ is proper and jointly convex [1, Proposition 8.25, Ex. 8.44]. Also, for b > 0
and x ≥ 0, note ρ(x, ·) is clearly decreasing on R>0; ρ(·, b) is even and hence increasing on R≥0 [1,
Proposition 11.7]; and x− b

2 ≤ ρ(x, b) as a tangent line of the convex function ρ(·, b). Furthermore,
ρ is subadditive [1, Example 10.5]:

n∑
i=1

ρ(xi, bi) ≥ ρ

(
n∑
i=1

xi,

n∑
i=1

bi

)
. (12)

Lemma 1.4. Let x, c be nonnegative numbers and let b be a positive number. Then,

(x− c)2

2b
+ c ≥ ρ(x, b) (13)

Proof. Fixing x and b, the left-hand side of (13) is a quadratic function of c with minimum attained
at c = x− b for x ≥ b, and c = 0 for x ≤ b. Thus,

if x ≥ b, then
(x− c)2

2b
+ c ≥ x− b

2
; if x ≤ b, then

(x− c)2

2b
+ c ≥ x2

2b
. (14)

The following takes inspiration from [3] and includes a nonmonotone sequence (at)t∈N repre-
senting extra progress.

Lemma 1.5. Let ht and at be nonnegative numbers for t ∈ N, let b > 0, let ρ be given by (11), and
suppose that ht − ht+1 ≥ ρ(ht + at, b) for every t ∈ N. Then (ht)t∈N decreases monotonically and

(∀t ∈ N) ht ≤


b
2 − a0 if t = 1

2b

t− 1 + 2b
h1

+
∑t−1

k=1
2ak
h1

+
(
ak
h1

)2 if t ≥ 2. (15)
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Proof. Since ht−ht+1 ≥ ρ(ht+ at, b) ≥ 0, the sequence (ht)t∈N is decreasing. Since x− b
2 ≤ ρ(x, b),

our recursion yields h0+a0−b/2 ≤ h0−h1, and rearranging proves h1 ≤ b/2−a0. Next, we observe
that since (ht)t∈N is monotonic and ρ is strictly monotonically increasing in its first argument, for
every k ≥ 1, we have ρ(b, b) = b

2 ≥ h1 ≥ hk ≥ hk − hk−1 ≥ ρ(hk + ak, b), so hk + ak ≤ b and
hence ρ(hk + ak, b) = (hk + ak)

2/(2b). Now, fix t ∈ N \ {0}. If ht+1 = 0, we are done; otherwise, by
monotonicity we have 0 < ht+1 ≤ · · · ≤ h1. So,

(∀k ∈ {1, . . . , t}) 1

hk+1
− 1

hk
=
hk − hk+1

hkhk+1
≥ (hk + ak)

2

2bhkhk+1
=

1

2b

(
hk
hk+1

+
2ak
hk+1

+
a2k

hkhk+1

)
≥ 1

2b

(
1 +

2ak
h1

+

(
ak
h1

)2
)
.

(16)

We sum (16) over k ∈ {1, . . . , t} to find

1

ht+1
− 1

h1
≥ 1

2b

(
t+

t∑
k=1

2ak
h1

+

(
ak
h1

)2
)
, (17)

and rearranging (17) completes the result.

1.2 Generic form of BCFW

Consider the generic form of the block-coordinate Frank-Wolfe algorithm shown in Algorithm 1.
The selection strategies of the blocks (It)t∈N in [2, 18, 21] arise as special cases.

Algorithm 1 Block-Coordinate Frank-Wolfe (BCFW), Generic form

Require: Function f :×i∈I Ci → R, gradient ∇f , point x0 ∈×i∈I Ci, linear minimization oracles
(LMOi)i∈I

1: for t = 0, 1 to . . . do
2: Choose a nonempty block It ⊂ I
3: gt ← ∇f(xt)
4: for i = 1 to m do
5: if i ∈ It then
6: vit ← LMOi(g

i
t)

7: γit ← Step size parameter (see also Sections 2, 3)
8: xit+1 ← xit + γit(v

i
t − xit)

9: else
10: xit+1 ← xit
11: end if
12: end for
13: end for
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Remark 1.6. For Lf -smooth objective functions f , the smoothness inequality (5) and Line 8 of
Algorithm 1 yield

f(xt+1)− f(xt) ≤
∑
i∈It

γit〈∇if(xt) | vit − xit〉+
Lf
2
(γit)

2‖vit − xit‖2. (18)

To tighten the bound (18), a common step size choice is to minimize the summands via a compo-
nentwise analogue of the so-called short step [2]:

γit = Argmin
γ∈[0,1]

(
−γGi(xt) + γ2

Lf
2
‖vit − xit‖2

)
= min

{
Gi(xt)

Lf‖vit − xit‖2
, 1

}
. (short)

This is analyzed in Sections 2.2 and 3 for convex and nonconvex objectives respectively. Section 2.1
addresses a situation where a similar update to (short) is performed using an estimation.

The following examples demonstrate that Algorithm 1 need not converge using componentwise
analogues of classical F-W stepsizes.

Example 1.7 (Non-convergent componentwise line search). Frank-Wolfe methods at a point xt
with vertex vt are commonly known to converge where step sizes are selected by a linesearch,
i.e., γt = Argminγ∈[0,1] f(xt + γ(vt − xt)) [6]. However, when linesearch stepsizes are chosen
componentwise, namely via

γit ∈ Argmin
γ∈[0,1]

f
(
xt + γ(vit − xit)

)
, (19)

Algorithm 1 need not converge. Let I := {1, 2}, H1 = H2 = R, C1 = C2 = [−1, 1], and f(x) :=
(x1 + x2)2; in particular, Lf = 4. The minimal function value of 0 is attained at the points x for
which x1 = −x2. With full block activation It = {1, 2} and componentwise linesearch (19), the
iterates of Algorithm 1 satisfy x1

t+1 = −x2
t and x2

t+1 = −x1
t . Hence, a possible sequence of iterates

is ((−1)t, (−1)t), which does not converge to optimality in function value.

Example 1.8 (Non-convergent componentwise short-step). In singleton-update cyclic schemes,
it is possible to use a variant of (short) where, for every i ∈ I, Lf is replaced by the Lip-
schitz constant βi of ∇f over the component Ci. More precisely, componentwise short-steps
γit = min{1, Gi(xt)/βi‖vit − xit‖2} allow for larger step sizes [2], since βi ≤ Lf . However, in
Example 1.7, β1 = β2 = 2 6= 4 = Lf , i.e., γit is the same as in Example 1.7. Therefore, using
Algorithm 1 with It = {1, 2}, this short step variant may produce the same iterates as Example 1.7,
which do not get close to the optimal solution.

The following technical lemma is for combining with inequalities of the form f(xt)− f(xt+1) ≥
τPt (τ > 0) to construct convergence results in Sections 2 and 3. For τ = 1, the above inequality
naturally arises as a consequence of convexity and smoothness (seen in Fact 2.1). The (Mt)t∈N play
the role of approximate smoothness constants.

Lemma 1.9. Let×i∈I Ci ⊂ H be a finite product of nonempty compact convex sets Ci, let D be the
diameter of×i∈I Ci, let f :×i∈I Ci → R be Fréchet differentiable, let K be a positive integer, let
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(Mt)t∈N be a sequence of positive numbers, and for every J ⊂ I, let GJ be given by (7) In the setting
of Algorithm 1, for every t ∈ N and J ⊂ I, set vJt = LMOJ(gt), set

Pt = 〈gt | xt − xt+1〉 −
Mt+1‖xt − xt+1‖2

2
+
‖gI\Itt − g

I\It
t+1 ‖2

2Mt+1
, (20)

set At =
∑K−1

k=1 GIt+k−1∩(It+k∪···∪It+K−1)(xt+k) ≥ 0, and for every i ∈ It let Line 7 be specified by

γit = min

{
1,

Gi(xt)

Mt+1‖xit − vit‖2

}
. (21)

Then, for every t ∈ N, the following hold:

(i) (∀J ⊆ I \ It) Pt ≥ ρ
(
|GIt∪J(xt)− 〈gJt+1 | xJt − vJt 〉|,Mt+1‖xIt∪Jt − vIt∪Jt ‖2

)
.

(ii)
∑K−1

k=0 Pt+k ≥ ρ
(
GIt∪···∪It+K−1

(xt) +At,
∑K

k=1Mt+kD
2
)
.

Proof. Let i ∈ It. We claim

〈git | xit − xit+1〉 −
Mt+1‖xit − xit+1‖2

2
= ρ(〈git | xit − vit〉,Mt+1‖xit − vit‖2). (22)

We distinguish two cases depending on γit . If 〈git | xit − vit〉 ≥ Mt+1‖xit − vit‖2 then γit = 1 and
xit+1 = vit, therefore we find

〈git | xit − xit+1〉 −
Mt+1‖xit − xit+1‖2

2
= 〈git | xit − vit〉 −

Mt+1‖xit − vit‖2

2

= ρ(〈git | xit − vit〉,Mt+1‖xit − vit‖2).
(23)

On the other hand, if 〈git | xit − vit〉 ≤ Mt+1‖xit − vit‖2, then γit = 〈git | xit − vit〉/(Mt+1‖xit − vit‖2),
so

〈git | xit − xit+1〉 −
Mt+1‖xit − xit+1‖2

2
=
〈git | xit − vit〉

2

2Mt+1‖xit − vit‖2

= ρ(〈git | xit − vit〉,Mt+1‖xit − vit‖2).
(24)

Summing up (22) for i ∈ It and using subadditivity of ρ (12), we obtain (i) for J = ∅. To show (i)
for arbitrary J ⊆ I \ It, we use an additional norm inequality, then (i) for J = ∅, and Lemma 1.4
(with c = 0), followed by subadditivity and monotonicity of ρ (12):

Pt = 〈gt | xt − xt+1〉 −
Mt+1‖xt − xt+1‖2

2
+
‖gI\Itt − g

I\It
t+1 ‖2

2Mt+1

≥ 〈gt | xt − xt+1〉 −
Mt+1‖xt − xt+1‖2

2
+
〈gJt − gJt+1 | xJt − vJt 〉

2

2Mt+1‖xJt − vJt ‖2

≥ ρ(〈gItt | x
It
t − vItt 〉,Mt+1‖xItt − vItt ‖2) + ρ(|〈gJt − gJt+1 | xJt − vJt 〉|,Mt+1‖xJt − vJt ‖2)

≥ ρ(|GIt∪J(xt) − 〈gJt+1 | xJt − vJt 〉|,Mt+1‖xIt∪Jt − vIt∪Jt ‖2).
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Next, to show (ii), we begin by using (i) with monotonicity of ρ:

(∀J ⊂ I) Pt ≥ ρ(|GJ(xt)− 〈gJ\Itt+1 | x
J\It
t − v

J\It
t 〉|,Mt+1D

2). (25)

Summing up (25) for k ∈ {t, . . . , t+K− 1} with the sets Jk :=
⋃t+K−1
j=t+k Ij , we bound the righthand

side using monotonicity and subadditivity of ρ:

K−1∑
k=0

Pt+k ≥
K−1∑
k=0

ρ(|GJk(xt+k)− 〈g
Jk\It+k

t+k+1 | x
Jk\It+k

t+k − v
Jk\It+k

t+k 〉|,Mt+k+1D
2)

≥ ρ

(
G̃,

K∑
k=1

Mt+kD
2

)
,

(26)

where, using Line 10 and the notational convention that G∅(xt+K−1) = 0,

G̃ :=

K−1∑
k=0

GJk(xt+k)− 〈g
Jk\It+k

t+k+1 | x
Jk\It+k

t+k − v
Jk\It+k

t+k 〉

=
K−1∑
k=0

GJk(xt+k)−GJk\It+k
(xt+k+1) + 〈g

Jk\It+k

t+k+1 | v
Jk\It+k

t+k − v
Jk\It+k

t+k+1 〉

= GJ0(xt) +

K−1∑
k=1

(
GJk(xt+k)−GJk\It+k−1

(xt+k)
)
+

K−1∑
k=0

〈gJk\It+k

t+k+1 | v
Jk\It+k

t+k − v
Jk\It+k

t+k+1 〉

= GIt∪···∪It+K−1
(xt) +

K−1∑
k=1

GIt+k−1∩Jk(xt+k) +
K−1∑
k=0

〈gJk\It+k

t+k+1 | v
Jk\It+k

t+k − v
Jk\It+k

t+k+1 〉

≥ GIt∪···∪It+K−1
(xt) +

K−1∑
k=1

GIt+k−1∩Jk(xt+k) ≥ 0.

The last two inequalities use nonnegativity of all the summands involved, relying on minimality of
the points vt+k+1. Finally, using monotonicity of ρ again:

K−1∑
k=0

Pt+k ≥ ρ

(
G̃,

K∑
k=1

Mt+kD
2

)
≥ ρ

(
GIt∪···∪It+K−1

(xt) +At,
K∑
k=1

Mt+kD
2

)
.

Remark 1.10 (Interpretation of the gaps At in Lemma 1.9). For every t ∈ N, each of the following
summands in the lower bound of Lemma 1.9

At =
K−1∑
k=1

GIt+k−1∩(It+k∪···∪It+K−1)(xt+k) ≥ 0 (27)
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is a partial Frank-Wolfe gap for components that are updated more than once between iterations t
and t+K − 1. Via Lemma 1.2, for each collection of reactivated components J ⊂ I, if f is convex
then each summand can be bounded by

GJ(xt+k) ≥ f(xt+k)− min
x∈×i∈I Ci

xI\J=x
I\J
t+k

f(x) ≥ 0. (28)

As will be seen in Sections 2 and 3, the gaps At contribute to faster convergence, and they may
explain the favorable behavior observed in Section 4. However, in general, At may not always
be strictly positive. Hence, we do know how to utilize these gaps to construct a worst-case rate
which is better than the cyclic-type rates of O(K/t) for convex objective functions (Section 2) and
O(
√
K/t) for nonconvex objectives (Section 3). We conjecture that under additional hypotheses

(potentially hemivariance, which has been successfully used in other block-coordinate problems
[28]), these gaps may lead to an improved convergence result.

2 Convex objective functions

In this section we show that under two step size regimes, using Algorithm 1 with Assumption 1.1,
the primal gap of a convex objective function is guaranteed to converge at a rate of O(K/t) after t
iterations. Section 2.1 is devoted to an adaptive step size scheme whereby the constant Lf may be
unknown a-priori. As a consequence, in Section 2.2 we also achieve convergence for the block-wise
“short-step” variant of Frank-Wolfe (also sometimes called “adaptive” [2, Section 4.2]), where an
overestimation of Lf is available. Our convergence rates (Theorem 2.5 and Corollary 2.8) match
for the special case of cyclic activation [2].

2.1 Analysis for adaptive step sizes

In recent years, Frank-Wolfe methods have been developed to address the situation where the
smoothness constant of the objective Lf is not known. These backtracking, or adaptive variants
dynamically maintain an estimated smoothness constant across iterations, typically ensuring that
the smoothness inequality (5) holds empirically between the current iterate xt and the next iterate
xt+1, at the expense of extra gradient and/or function evaluations [2, 22, 23]. In this section, we
present a similar method for BCFW under Assumption 1.1.

Our analysis relies on the following which, to the best of our knowledge, first appeared in [16]
and was later shown to characterize convex smooth interpolability [27].

Fact 2.1 ([16]). Let f : H→ R be convex and Lf -smooth on H. Then,

(∀x,y ∈H) f(x)− f(y)− 〈∇f(y) | x− y〉 ≥ ‖∇f(x)−∇f(y)‖
2

2Lf
. (29)

11



Algorithm 2 Adaptive Block-Coordinate Frank-Wolfe

Require: Function f :×i∈I Ci → R, gradient ∇f , point x0 ∈×i∈I Ci, linear minimization oracles
(LMOi)i∈I , smoothness estimation M0 > 0, and approximation parameters 0 < η ≤ 1 < τ .

1: for t = 0, 1 to . . . do
2: Choose a nonempty block It ⊂ I (See Assumption 1.1)
3: gt ← ∇f(xt)
4: x̃it+1 ← xit for all i ∈ I \ It # Indices outside of It unchanged
5: M̃t+1 ← ηMt # Candidate smoothness constant for iteration t+ 1
6: for i ∈ It do
7: vit ← LMOi(g

i
t)

8: γit ← min

{
1,
〈git | xit − vit〉
M̃t+1‖xit − vit‖2

}
9: x̃it+1 ← xit + γit(v

i
t − xit)

10: end for
11: while f(xt)− f(x̃t+1)− 〈∇f(x̃t+1) | xt − x̃t+1〉 < ‖gt −∇f(x̃t+1)‖2/2M̃t+1 do
12: M̃t+1 ← τM̃t+1 # If (29) does not hold, increase the smoothness estimate.
13: for i ∈ It do
14: Update γit and x̃it+1 as in lines 8 and 9.
15: end for
16: end while
17: xt+1 ← x̃t+1 # Guarantees that (29) holds for relevant points
18: Mt+1 ← M̃t+1

19: end for

The interpolability result [27] implies that a function f satisfying (29) for all x,y in a convex
set has an extension to a convex Lf -smooth function on H, and therefore, for simplicity of presen-
tation, our results in this section assume that f is already extended, i.e., convex and Lf -smooth on
H. For objective functions which cannot be extended to H, see Remark 3.4.

Fact 2.1 is particularly attractive for block-iterative algorithms, where differences of gradients
often arise as error terms, while in (29) the difference appears as a lower bound on primal progress
(further demonstrated in Lemma 2.4). This feature is the key to obtaining the same constant factors
in the convergence guarantee as for traditional Frank-Wolfe algorithms, e.g., in [6, Theorem 2.2].
Hence, instead of checking the smoothness inequality as in [22] or another consequence as in [23],
Algorithm 2 checks (29). Note that Algorithm 2 can be viewed as a version of Algorithm 1 where
γit is computed with an adaptive subroutine (see also Remark 1.6).

Remark 2.2. Similarly to [22, 23], by Fact 2.1, for all convex Lf -smooth objective functions f , the
loop starting at Line 11 of Algorithm 2 always terminates, at latest the first time when M̃t+1 ≥ Lf ,
potentially overshooting by a factor of τ . HenceMt+1 can only be at least τLf if the loop terminates
immediately, i.e., without any multiplication by τ in Line 12. Let t0 be the smallest nonnegative

12



integer with ηt0M0 ≤ τLf , which exists unless M0 > τLf and η = 1. Therefore,

Mt = ηtM0 > τLf 1 ≤ t < t0 (30)

Mt ≤ τLf t ≥ t0. (31)

Remark 2.3. Even though the adaptive step size strategy in Algorithm 2 requires extra function
and gradient evaluations (Lines 11–16), the LMOs are only computed once per iteration, namely
in Line 7. In tandem with Assumption 1.1, this allows for flexible management of LMO costs.

The following presents a lower bound on primal progress.

Lemma 2.4 (Progress bound via smoothness and convexity (29)). Let×i∈I Ci ⊂ H be a product
of m nonempty compact convex sets, let D be the diameter of×i∈I Ci, let f : H → R, be convex and
Lf -smooth, let ρ be given by (11), let x∗ be a solution to (1), and for every nonempty J ⊂ I let
GJ be given by (7). In the setting of Algorithm 2, suppose that K satisfies Assumption 1.1 and set
At =

∑K−1
k=1 GIt+k−1∩(It+k∪···∪It+K−1)(xt+k) ≥ 0. Then (f(xt))t∈N is monotonically decreasing and

(∀t ∈ N) f(xt)− f(xt+K) ≥ ρ

(
f(xt)− f(x∗) +At,

K∑
k=1

Mt+kD
2

)
. (32)

Proof. Recall from Remark 2.2 that in Algorithm 2 the loop starting at Line 11 terminates, and
therefore the algorithm generates an infinite sequence of iterates satisfying the first inequality of
the following chain. The second inequality is a simple norm estimation, and the third one is a
quadratic inequality, not needing any assumption on the scalar products and norms. We also make
use of the fact xI\Itt = x

I\It
t+1 .

f(xt)− f(xt+1) ≥ 〈gt+1 | xt − xt+1〉+
‖gt − gt+1‖2

2Mt+1

= 〈gItt+1 | x
It
t − xItt+1〉+

‖gItt − gItt+1‖2

2Mt+1
+
‖gI\Itt − g

I\It
t+1 ‖2

2Mt+1

≥ 〈gItt+1 | x
It
t − xItt+1〉+

〈gItt − gItt+1 | xt − xt+1〉
2

2Mt+1‖xItt − xItt+1‖2
+
‖gI\Itt − g

I\It
t+1 ‖2

2Mt+1

≥ 〈gItt | x
It
t − xItt+1〉 −

Mt+1‖xItt − xItt+1‖2

2
+
‖gI\Itt − g

I\It
t+1 ‖2

2Mt+1

= 〈gt | xt − xt+1〉 −
Mt+1‖xt − xt+1‖2

2
+
‖gI\Itt − g

I\It
t+1 ‖2

2Mt+1
= Pt,

(33)

where Pt is the same as in Lemma 1.9. Monotonicity of (f(xt))t∈N follows from Lemma 1.9(i).
Telescoping the lefthand sum of (33) and invoking Lemma 1.9(ii) with Assumption 1.1, we find
f(xt)−f(xt+K) ≥ ρ(GI(xt)+At,

∑K
k=1Mt+kD

2). Since f is convex, by optimality of the LMO and
(6), we have GI(xt) ≥ 〈∇f(xt) | xt − x∗〉 ≥ f(xt)− f(x∗), so (32) follows from monotonicity of ρ
(Fact 1.3).

13



Theorem 2.5. Let×i∈I Ci ⊂ H be a product of m nonempty compact convex sets, let D be
the diameter of×i∈I Ci, let f : H → R be convex and Lf -smooth, let τ > 1 ≥ η > 0 and
M0 > 0 be approximation parameters, let x∗ be a solution to (1), and for every nonempty
J ⊂ I let GJ be given by (7). If η = 1, we assume M0 ≤ τLf and set n0 = 0;3 otherwise,
n0 := max{dlog(τLf/(ηM0))/(K log η)e, 0}. In the setting of Algorithm 2, suppose that K satisfies
Assumption 1.1, and set At =

∑K−1
k=1 GIt+k−1∩(It+k∪···∪It+K−1)(xt+k) ≥ 0. Then, in the first t itera-

tions, Algorithm 2 evaluates f and∇f at most t+1+max{0, dlogτ (η−tLf/M0)e} times. Furthermore,
for every n ∈ N,

f(xnK)− f(x∗) ≤


min

0≤p≤n−1

{
KηpKM0D

2

2
−ApK

}
if 1 ≤ n ≤ n0 + 1

2KτLfD
2

n− n0 +
∑n

p=n0

2ApK

f(xn0 )−f(x∗)
+
(

ApK

f(xn0 )−f(x∗)

)2 if n > n0 + 1.

(34)

Proof. We start by estimating the number of function and gradient computations of Algorithm 2.
Except for t = 0, where f(x0) and ∇f(x0) are computed, for all t ≥ 1, in the preceding iteration
f(xt) and ∇f(xt) have already been computed. So, in the first t iterations, there have been t + 1
function and gradient evaluations for the initial check of Line 11 in each iteration. Now, let k
denote the total number of function and gradient evaluations in the first t iterations, i.e., k − t− 1
is the total number subsequent checks of Line 11 and also the number of times that line 12 has
been executed. By Remark 2.2, unless k = 0, we have Mt = ηtτk−t−1M0 < τLf , therefore at most
k ≤ t+ 1 +max{0, dlogτ (η−tLf/M0)e} function and gradient evaluations are performed.

We turn now to the convergence rate. As in Remark 2.2, let t0 be the smallest nonnegative
integer with ηt0M0 ≤ τLf . The number n0 is chosen to be the smallest nonnegative integer with
t0 ≤ n0K+1. Let 1 ≤ n ≤ n0. By Remark 2.2, M(n−1)K+1 = η(n−1)K+1M0 > τLf and M(n−1)K+1 ≥
Mt for all t > (n− 1)K. By Lemma 2.4 and Fact 1.3,

f(x(n−1)K)− f(xnK) ≥ ρ

(
f(x(n−1)K)− f(x∗) +A(n−1)K ,

K∑
k=1

MnK+kD
2

)
≥ ρ(f(x(n−1)K)− f(x∗) +A(n−1)K ,Kη

(n−1)K+1M0D
2)

≥ f(x(n−1)K)− f(x∗) +A(n−1)K −
Kη(n−1)K+1M0D

2

2
.

(35)

Rearranging (35) shows f(xnK) − f(x∗) ≤ Kη(n−1)K+1M0D
2/2 − A(n−1)K . Therefore, since

(f(xt))t∈N is monotonically decreasing (Lemma 2.4), the first case of (34) follows. By the choice
of n0, we have ηn0K+1M0 ≤ τLf , thus Mt ≤ τLf for t ≥ n0K. Let n ≥ n0 + 1. Then Lemma 2.4
yields

f(x(n−1)K)− f(xnK) ≥ ρ

(
f(x(n−1)K)− f(x∗),

K∑
k=1

M(n−1)K+kD
2

)
≥ ρ(f(x(n−1)K)− f(x∗),KτLfD2).

(36)

3If M0 > τLf , then f is also M0-smooth, so this assumption is WLOG for notational convenience in the case η = 1.
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and the second case of (35) follows from Lemma 1.5.

To interpret the extra gaps (At)t∈N in Theorem 2.5, see Remark 1.10.

Corollary 2.6. In the context of Theorem 2.5, let Algorithm 2 use a block selection strategy without
coordinate reactivation, i.e., InK+i ∩ InK+j = ∅ for all n and 1 ≤ i < j ≤ K. Then, for any

0 < ε ≤ KτLfD2/2, the primal gap f(xnK)−f(x∗) ≤ ε is guaranteed after at mostm(n0+
2KτLfD

2

ε )
LMO calls and computation of at most t+1+max{0, dlogτ (η−tLf/M0)e} function values and gradients.

Remark 2.7. Under stricter assumptions, one can achieve linear convergence by following the
template [6, Section 2.2.1] from the penultimate inequality in the proof of Lemma 2.4.

2.2 Short-steps with convex objectives

In this section, we consider the short step rule of Remark 1.6

γit = Argmin
γ∈[0,1]

(
−γGi(xt) + γ2

Lf
2
‖vit − xit‖2

)
= min

{
Gi(xt)

Lf‖vit − xit‖2
1

}
, (short)

which requires an upper bound on Lf . For this price, Short-Step BCFW (Algorithm 3) becomes
easier to parallelize in lines 5–8, foregoes any function evaluations, and requires only one gradient
evaluation per iteration.

Algorithm 3 Block-Coordinate Frank-Wolfe (BCFW) with Short Steps

Require: Function f :×i∈I Ci → R, gradient ∇f , point x0 ∈×i∈I Ci, linear minimization oracles
(LMOi)i∈I

1: for t = 0, 1 to . . . do
2: Choose a nonempty block It ⊂ I
3: gt ← ∇f(xt)
4: for i = 1 to m do
5: if i ∈ It then
6: vit ← LMOi(g

i
t)

7: γit ← min

{
1,
〈git | xit − vit〉
Lf‖vit − xit‖2

}
8: xit+1 ← xit + γit(v

i
t − xit)

9: else
10: xit+1 ← xit
11: end if
12: end for
13: end for
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Corollary 2.8. Let×i∈I Ci ⊂ H be a product of m nonempty compact convex sets, let D be the
diameter of×i∈I Ci, let f : H → R be convex and Lf -smooth, let x∗ be a solution to (1), and for
every nonempty J ⊂ I let GJ be given by (7). In the setting of Algorithm 3, suppose that K satisfies
Assumption 1.1, and set At =

∑K−1
k=1 GIt+k−1∩(It+k∪···∪It+K−1)(xt+k) ≥ 0. Then,

(∀n ∈ N) f(xnK)− f(x∗) ≤


KLfD

2

2
−A0 if n = 1

2KLfD
2

n− 1 +
∑n

p=1
2ApK

f(x1)−f(x∗) +
(

ApK

f(x1)−f(x∗)

)2 if n ≥ 2.
(37)

Furthermore Algorithm 3 requires one gradient evaluation per iteration.

Proof. This follows from the fact that Algorithm 3 produces the same sequence of iterates as Al-
gorithm 2: by initializing Algorithm 2 with M0 = Lf and η = 1, as by Fact 2.1, the condition in
Line 11 of Algorithm 2 is always true. Hence, this case of Algorithm 2 coincides with Algorithm 3
and we achieve convergence from Theorem 2.5 for all τ > 1; taking the limit as τ ↘ 1 yields (37).
Clearly, Algorithm 3 requires one gradient evaluation per iteration.

We note that both the convergence rate and the prefactor of Corollary 2.8 match the non-block
version (K = 1) [6, Theorem 2.2].

3 Nonconvex objective functions

In this section, we consider Algorithm 3 under Assumption 1.1 on nonconvex objective functions
with Lf -Lipschitz continuous gradients. Since (29) only holds for smooth and convex functions, a
different progress lemma which relies on the traditional smoothness inequality (5) is derived. We
begin with a blockwise descent lemma.

Lemma 3.1. Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets and let f : H→ R be
Lf -smooth on×i∈I Ci. In the setting of Algorithm 3, (f(xt))t∈N is monotonically decreasing, and

(∀t ∈ N) f(xt)− f(xt+1) ≥
〈∇f(xt) | xt − xt+1〉

2
≥
Lf‖xt − xt+1‖2

2
. (38)

Proof. By (short), for every i ∈ It, Lf‖xit − vit‖γit ≤ Gi(xt), so

〈∇f(xt) | xit − xit+1〉 = γitGi(xt) ≥ (γit)
2Lf‖vit − xit‖2 = Lf‖xit − xit+1‖2. (39)

Summing (39) for all i ∈ It and using xit = xit+1 for i /∈ It (Line 10), we obtain

〈∇f(xt) | xt − xt+1〉 ≥ Lf‖xt − xt+1‖2. (40)
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We combine this with the smoothness inequality (5) to derive the claim:

f(xt)− f(xt+1) ≥ 〈∇f(xt) | xt − xt+1〉 −
Lf
2
‖xt − xt+1‖2

≥ 〈∇f(xt) | xt − xt+1〉
2

≥
Lf
2
‖xt − xt+1‖2.

(41)

Lemma 3.2 (Progress bound via smoothness (5)). Let ×i∈I Ci ⊂ H be a product of m
nonempty compact convex sets, let D be the diameter of ×i∈I Ci, let f : ×i∈I Ci → R be a
function with Lf -Lipschitz continuous gradient ∇f on×i∈I Ci, let GI be given by (8), and let
t ∈ N. In the setting of Algorithm 3, suppose that K satisfies Assumption 1.1, and set At =∑K−1

k=0 G(It+k∪···∪It+K−1)∩It+k−1
(xt+k) ≥ 0. Then

f(xt)− f(xt+K) ≥
ρ(GI(xt) +At,KLfD

2)

2
. (42)

Proof. For any iteration t, we have by smoothness (5)

f(xt)− f(xt+1) ≥ 〈gt | xt − xt+1〉 −
Lf‖xt − xt+1‖2

2
. (43)

By Lemma 3.1 and Lipschitz continuity of gradient, we also have

f(xt)− f(xt+1) ≥
Lf‖xt − xt+1‖2

2
≥
‖gt − gt+1‖2

2Lf
≥
‖gI\Itt − g

I\It
t+1 ‖2

2Lf
. (44)

The sum of (43) and (44) is

2(f(xt)− f(xt+1)) ≥ 〈gt | xt − xt+1〉 −
Lf‖xt − xt+1‖2

2
+
‖gI\Itt − g

I\It
t+1 ‖2

2Lf
. (45)

Summing (45) from t to t+K − 1, invoking Lemma 1.9(ii), then dividing by 2 yields (42).

We are ready to provide convergence for nonconvex functions. Due to lack of optimality guaran-
tees for nonconvex functions, a typical result for Frank-Wolfe algorithms states that the algorithm
produces a point with arbitrarily small F-W gap [6, 22], this is closely related to stationarity.

Theorem 3.3 (Nonconvex convergence). Let×i∈I Ci ⊂ H be a product of m nonempty compact
convex sets with diameter D. Let f : H → R be such that ∇f is Lf -Lipschitz continuous on×i∈I Ci.
Let GI be given by (8). In the setting of Algorithm 3, suppose that K satisfies Assumption 1.1, set
H0 = f(x0)− infx∈×i∈I Ci

f(x), and for every n ∈ N set

An =

K−1∑
k=1

GIn+k−1∩(In+k∪···∪In+K−1)(xn+k) ≥ 0. (46)
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Then, for every n ∈ N \ {0},

min
0≤p≤n−1

GI(xpK) ≤ 1

n

n−1∑
p=0

GI(xpK) ≤


2H0−

∑n−1
p=0 ApK

n +
KLfD

2

2 if n ≤ 2H0
KLfD2

2D

√
H0KLf

n −
∑n−1

p=0 ApK

n otherwise.
(47)

In consequence, there exists a subsequence (nk)k∈N such that GI(xnkK)→ 0, and every accumulation
point of (xnkK)k∈N is a stationary point of (1).

Proof. By telescoping the result of Lemma 3.2 over multiples of K, then using subadditivity (12),

2H0 ≥ 2(f(x0)−f(xnK)) ≥
n−1∑
p=0

ρ(GI(xpK)+ApK ,KLfD
2) ≥ ρ

n−1∑
p=0

GI(xpK) +ApK , nKLfD
2

 .

Observe that, for x, y ≥ 0 and b > 0, we have for y ≥ b
2 by strict monotonicity of ρ that y ≥ ρ(x, b)

if and only if x ≤ y + b
2 . For y ≤ b

2 we have y ≥ ρ(x, b) if and only if x ≤
√
2by. Therefore,

n−1∑
p=0

GI(xpK) +ApK ≤

{
2H0 +

nKLfD
2

2 if 2H0 ≥ nKLfD2

2D
√
H0nKLf otherwise.

(48)

Dividing (48) by n and rearranging yields (47).

Remark 3.4. If f is convex and ∇f is Lipschitz-continuous on×i∈I Ci, yet f is not extendable to
a smooth function on H (see Fact 2.1), then one can nonetheless achieve O(K/t) convergence, by
applying an argument similar to the proof of Theorem 2.5, replacing Lemma 2.4 with Lemmas 3.1
and 3.2, yielding the same rate with a worse constant.

4 Numerical Experiments

In this section we examine different block selection strategies covered by Assumption 1.1 on
some simple experiments. For each experiment, we ran 10, 000 iterations of Algorithm 3 using
FrankWolfe.jl (v3.3) [4] in Julia 1.8.5. Computations were performed on one node with 3 GB
RAM allocated on an Intel Xeon Gold 6246 machine with 3.3 GHz CPU speed, running Linux man-
aged by Slurm and no concurrent jobs on the node. To ensure feasibility of the initial iterate, for
every i ∈ I, we generated an initial vector ci ∈ Hi with normally distributed entries of mean 0
and standard deviation 1, then set xi0 = LMOi(c

i). Within each experiment, the only thing that
changes is how the blocks (It)t∈N are selected. We compare block selection strategies newly allowed
by Assumption 1.1 to the following techniques (e.g., in [2, 21]) covered by our results:

(i) Full activation: It = I.

(ii) Cyclic activation: It = {t} (mod m).

18



(iii) P-Cyclic activation: It = σbt/mc(t (mod m)), where for every cycle over m iterations, σbt/mc is
a uniformly random permutation of {1, . . . ,m}.

Section 4.1 studies a convex problem with m = 2 components, and Section 4.2 examines a noncon-
vex problem with many components. In line with Theorems 2.5 and 3.3, our optimality criterion
is the primal gap for Section 4.1 and minimal F-W gap for Section 4.2. The code used to produce
these results can be found here: https://github.com/zevwoodstock/BlockFW.

In addition to plotting our optimality criterion against iterations and time, we also plot against
the number of evaluations for the most computationally-intensive LMO (spectrahedron LMO for
Section 4.1; nuclear norm ball LMO for Section 4.2). The expensive-LMO count is a more repro-
ducible proxy for time in our experiments, since it correlated with time used for all algorithms, and
it was the dominant cost of even a full F-W iteration. From some perspective, these plots are unfair
to the full/cyclic selection schemes, since they are forced to activate the most expensive LMO at
a fixed rate and our new methods have more flexibility to re-activate cheaper components; how-
ever, flexibility in activation is precisely the point here, and until this work it was unclear if such
reactivations would provide progress for BCFW at all.

4.1 Experiment 1: Intersection problem

The goal is to find a matrix x ∈ Rn×n in the intersection of the hypercube C1 = [−1, 1/n]n×n and
the spectraplex C2 = {x ∈ Rn×n | x � 0,Trace(x) = 1} for various values of n. The convex sets are
selected to have a thin intersection, and hence the minimal value of

minimize
x∈C1×C2

1

2
‖x1 − x2‖2 (49)

is zero. Problem (49) is convex, with smoothness constant Lf = 2. In this problem, the spectrahe-
dral linear minimization oracle, LMO2, is far more expensive than LMO1. So, for this experiment
we compare the traditional BCFW activations (i)–(iii) with the following “q-lazy” scheme which
is newly allowed for BCFW by Assumption 1.1 (with K = q) and has improved computational
performance in proximal algorithms [13]:

(∀t ∈ N) It =

{
{1, 2} if t ≡ 0 mod q;

{1} otherwise.
(50)

We run 20 instances of this problem on random initializations, and the averaged results are shown
in Figure 1. Even though using q-lazy activation is computationally cheaper on average, the per-
iteration progress is still competitive with that of full activation and the existing methods. However,
since they compute LMO2 at a much lower rate, these activation strategies also have a faster per-
iteration computation time.
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Fig. 1: Results of intersection for a cube and spectraplex (Section 4.1) displaying the primal gap f(xt) − f(x∗) versus
time, iteration, and spectrahedral LMO count for problems with n2 variables and block-activation strategies (i)–(iii) and
(50).
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4.2 Experiment 2: Difference of convex quadratics

The goal is to minimize a difference of convex quadratic functions of two collated matrices in Rn×n,
where the submatrices are constrained to an `∞ ball and a nuclear-norm ball respectively. In order
to examine the performance of Algorithm 3 when the number of components is large, we split the
`∞ constraint into n separate constraints. Hence, we set C1 = · · · = Cn :=

{
x ∈ Rn

∣∣ ‖x‖∞ ≤ 1
}

,
and Cn+1 =

{
x ∈ Rn×n

∣∣ ‖x‖nuc ≤ 1
}

. For x ∈×i∈I Ci we use [x] to denote the collated 2n × n
matrix of its components. For each problem instance, the kernel A,B of each quadratic is generated
by projecting a matrix with random normal entries of mean 0 and standard deviation 1 onto the set
of positive semidefinite matrices. Altogether, we seek to solve the following difference-of-convex
problem involving the Frobenius inner product

minimize
x∈C1×···×Cn+1

1

2

(〈
[x]
∣∣∣ [x]A〉− 〈[x] ∣∣∣ [x]B〉). (51)

Note the objective function of (51) is smooth and nonseparable. In the experiments we used the
Froebenous norm of A − B as smoothness constant Lf . For each instance of (51), we verify that
A − B is indefinite, hence the objective is also neither convex nor concave. Since the `∞ LMO is
far cheaper than the nuclear norm ball LMO [12], similarly to Section 4.1, we consider a family
of customized activation strategies that delay evaluating the most expensive operator LMOn+1.
In addition, on the “lazy” iterations involving only the LMOs of the `∞ norm ball, we perform a
parallel update involving a random subset of I \ {n+ 1} of size p:

(∀t ∈ N) It =

{
I if t ≡ 0 (mod q)

{i1, . . . , ip} ⊂ I \ {n+ 1} otherwise.
(52)

Averaged results from 20 instances of (51) are shown in Figure 2. Since the problem is noncon-
vex, we plot the minimal F-W gap observed (see Theorem 3.3). Since full F-W gaps are typically
unavailable in BCFW (only partial gaps for the activated blocks (Gi)i∈It are computed), iterates
were stored during the run of Algorithm 3 and full F-W gaps were computed post-hoc.

Similarly to Section 4.1, new selection strategies allowed by Assumption 1.1 can yield similar
per-iteration performance to that of full-activation Frank-Wolfe; furthermore, since the iterations
frequently involve the cheaper LMOs, this can yield faster convergence in wall-clock time. However,
these results also demonstrate that, if the number of activated components in It is too small and the
n + 1st component is activated too infrequently, results may worsen; this is reflected in the cyclic,
P -cyclic, and (p, q) = (2, 20) results.
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Fig. 2: Results for difference of quadratic functions (Section 4.2) displaying the minimal F-W gap versus time, iteration,
and nuclear norm LMO count for problems with n2 variables and block-activation strategies (i)–(iii) and (52); for (p, q)
activation, p is the number of “cheaper” coordinates activated per iteration, and q is the frequency of full activation.
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