High-precision linear minimization is no slower
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Abstract

This note demonstrates that, for all compact convex sets, high-precision linear
minimization can be performed via a single evaluation of the projection and a
scalar-vector multiplication. In consequence, if e-approximate linear minimiza-
tion takes at least L(e) vector-arithmetic operations and projection requires P
operations, then O(P) > O(L(e)) is guaranteed. This concept is expounded
with examples, an explicit error bound, and an exact linear minimization result
for polyhedral sets.
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1 Introduction

Notation 1. H is a real Hilbert space with inner product (- | -) and induced norm || -||.
The set C C H is nonempty, convex, and compact. The normal cone and indicator
function of C' are denoted N¢ and 1o respectively (see, e.g., [2]). The projection
operator onto C' is denoted Projo: H — H: x — Argmin o |lc —x||. The set of linear
minimization oracle points is LMOc: H — 2% : 2 — Argmin .o (c| z). Fore >0, an
e-approximate LMO of z is a point v € C' such that 0 < (v | ) — min.ec (¢ | z) <e.

Assumption 1. Suppose that projection and e-approximate linear minimization can
be performed over C' using finitely many vector-arithmetic operations. Let P and L(g)
respectively denote the smallest amount of operations required. *

1P and L(e) exist as limit points of monotonic sequences in N bounded below.



In constrained first-order optimization, a guiding motivator for the development of
Frank-Wolfe algorithms is the fact that their hallmark subroutine, the linear minimiza-
tion oracle (i.e., a selection of the operator LMO(), is currently faster than projection
oracles on some sets arising in applications, particularly in high-dimensional settings
[3, 4, 6]. While several works suggest that for specific sets, P > L(0), this principle
does not appear to have been definitively established for all compact convex sets. In
fact, regardless of approximateness (¢ > 0) or exactness (¢ = 0), it appears there
are no results pertaining to all compact convex sets that allow one to compare the
computational complexity of linear minimization to that of projection.

The main contribution of this article is showing that, for any ¢ > 0, a high-
precision e-approximate LMO can be obtained via the use of one projection and a
scalar-vector multiplication, yielding the complexity bound O(P) > O(L(¢)).? The
error bound in Theorem 2 explicitly depends on the radius and boundedness of C'. It
is further demonstrated that, when C' is also polyhedral, projection is no faster than
exact linear minimization, i.e., the stronger inequality O(P) > O(L(0)) holds. The
central approximation considered in this article comes from a geometric concept (see
Figure 1) that is known (e.g., see [10]). Nonetheless, as far as the author is aware, the
present error bound and complexity results appear to be new.

2 Relating linear minimization and projection

We begin with some basic facts; see, e.g., [2] for further background. Let x and z be
points in a real Hilbert space H. Then,

v € LMO¢(z) = Argerélin<c [2) ©0e€d((-]2)+tc)(v) =2+ Nc(v) & —2z € No(v)

vel
< sup{—z | ¢ —v) <0. (1)
ceC

Similarly, we have the following familiar identity

pelC

sup{x —p| c—p) <0.
ceC

(2)

p=Projczer—pe Ncp&

Proposition 1. Let C C H be a nonempty compact convexr set. Then, for every
r € H,
Proj(x) € LMO¢(Projo x — x). (3)

Proof. By setting z = Projox — z in (1), we see from (2) that Proj-(z) is a solution
of the characterization in (1). O

Remark 1. Since linear minimization is mnot unique in general, evaluating
LMO¢ (Projo z — x) may not yield Projo(x) for every numerical implementation of

2For the sake of presentation, we suppress the dependence of P and L on C and the dimension of H.



LMOc¢ [1]. However, for a particular selection of the operator LMOg¢, (3) is guaranteed
to hold with equality instead of inclusion.
For A > 0 sufficiently large, one can approximate an element of LMO¢(z) with

Projo(—Az). (4)
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Fig. 1 As )\ gets larger, Projs(—Az) approaches LMOc¢(z) for a shifted £2 ball.

Selecting the parameter \ can be guided as follows.
Theorem 2. Let © € H and let C be a nonempty, compact, and convexr subset of
H with diameter Sc = sup(,, .,yec2 le1 — c2|| = 0 and bound pc = sup.cc |c[| > 0.
Then, for every A > 0 and every v € LMO¢(z),

0 < (Proje(—Aa) | ) —min (e | ) < A oy proje (- aay)). 5

In consequence, we have || Proj-(—Az)| < ||v|| and for every e > 0,

min {dopuc, g |
€

A> = 0 < (Projo(—Az) | x) — rr&ig(c | z) <e. (6)

Proof. Let v € LMO¢(z). By Proposition 1, and the definition of the LMO,

Projo(—Az) € Argmin (¢ | Projo(—Az) + Az), (7)
ceC



so, for all ¢ € C, (Projo(—Az) | Projo(—Az) + Ax) < {(c|Projo(—Az) + Az). In
particular,

(Projo(—=Az) | Proja(—Az) + Azx) < (v | Projo(—Az) + Az). (8)
Dividing by A and rearranging, then proceeding with standard norm inequalities yields

(Projo(=Az) | ) — (v | 2) < A7 ({v | Projo(=Az)) — || Proja(=Az)||?) (9
< A (ol Proje (=A2)|| = [IProjo(=Ax)|?) (10
=AY Projo (=) [ ([[v]| = I Projo(=Az)l]) (11

)
)
)
< A7 Projo(=Az)|l|lv = Projo(=Az)]|. (12)
Since v is optimal, we can also lower bound (9) by 0; hence (5) follows from (11).
An immediate consequence of (5) is that || Proj-(—Az)|| < ||v||. Proceeding with the
bounds in (12), we have

0 < (Projo(—Xz) | z) — (v | 2) < X Yocpc. (13)

On the other hand, dropping the negative term in (11) implies 0 < (Projo(—Az) | z) —
(v|x), < A'uZ. Hence, in either case of A > e !min{dcuc,uZ}, (6) holds. In
particular, Proj-(—Az) is an e-approximate LMO. O

Corollary 1 (Projection is no faster than approximate LMO). Let e > 0 and suppose
that Assumption 1 holds. Then P+ 1 > L(e). In consequence, if P > 1, we also have
O(P) = O(L(e)).

Proof. From Theorem 2, L(¢) is bounded above by the cost of evaluating Proj(—Az),
which is P 4+ 1. O

Remark 2. The type of bound provided by Theorem 2 is consistent with many
algorithms that allow for inexact linear minimization, e.g., [4, 5, 9, 11].

In general, Theorem 2 requires A — oo to drive the error bound to zero (as demon-
strated, e.g., for a shifted ¢» ball). However, for some sets (e.g., the ¢, ball), exact
minimization is achieved for finite A, i.e., Projo(—Az) € LMO¢(z).? As will be seen
in Proposition 3, exact linear minimization for finite A can be achieved more generally.
Proposition 3 (Projection is no faster than exact LMO on polyhedral sets). Let
x € R" = H and suppose that C C H is compact, convex, and polyhedral. Then
there exists a finite value A\* > 0 such that Proj-(—A*z) € LMO¢(z). Further, if
Assumption 1 holds, then P+ 1> L(0); if P > 1, then O(P) > O(L(0)).

Proof. Without loss of generality C' = {:E eH | Ax =< b} where A € R™™™ and b €
R™. Let v = min.ec (c | #) and consider the problem of computing Proj;yvo (z)(0),

3Interactive graph demonstrations in 2-D for the shifted £ ball: https://www.desmos.com/calculator/
ntpelpncpu and €& ball: https://www.desmos.com/calculator/qk3tngskgw.
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i.e., the minimal-norm element of LMO¢ (z):

1
minimize = ||z (14)
zE€H 2
Az=b
(z]z)<v

By [8, Theorem 11.15], strong duality holds and hence the perturbation function
p: R™ — [—o0, +o0] 1y = infoep{f(2) [ Az —b = (:)iZy; (2] 2) =V < Yy} is
stable in the sense of [7], i.e., p(0) is finite and there exists M > 0 such that [7, pp. §]

With an eye towards using [7, Theorem 3], we will use (15) to show that the partially-
dualized perturbation function p: R — [—00, +00] : & — infena.—o=<0{f(2) | (x| 2)—
v < &} is also stable: this follows from the fact that p(0) = p(0) and, for all £ > 0,
p(§) =2 p(&; ..., §), so

p(0) —p€) _ p(0) —p(§) _ p(0) —p(,....&) _ ,/

= < < M, 16
G G ¢ 1o
as claimed. By [7, Theorem 3], there exists A* > 0 such that
: : 1 2 *
Projiyoc s (0) = Argmin 52" + A*(( | 2) —v) (17)
ASZb
1
= Argmin — || — \*z — z||* = Projo(—\*z), (18)
z€H 2
Az=<b

where (18) makes use of the fact that the minimization is not changed by addition of
the constant \*v + || \*x||?/2. This establishes that, for finite \* > 0, Proj.(—=A*z) €
LMO¢ (z). In consequence, under Assumption 1, the computation requied to perform
Projo(—A*z) (namely P + 1) is an upper bound on L(0), which completes the proof.

O

3 Conclusion

While this note demonstrates two connections between the complexities of projection
and linear minimization, the general relationship between P and L(0) warrants further
investigation.

For some sets (e.g., singletons), P = L(0). Hence, even though current evidence
suggests that P > L(0) on a myriad of important sets [3], strict inequality cannot
hold in general. Nonetheless, it remains an open question as to whether or not there
exists any compact convex set such that its projection operator has a faster runtime
complexity than exact linear minimization.

Question 1. Does there exist a nonempty compact convex set such that P < L(0)?
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