A "crash course" in nonsmooth convex optimization

Zev Woodstock
woodstock(at)zib.de*

1 Introduction

These notes are supplementary material to a "crash course" I am teaching in May of 2023. The topic is proximity operators and nonsmooth convex optimization. These notes are not meant to be used as a standalone resource. Please cite peer-reviewed material. The reference book for this class is Convex Analysis and Monotone Operator Theory, 2nd edition, by Heinz H. Bauschke and Patrick L. Combettes, published by Springer.

If unspecified, \mathcal{H} is a real finite-dimensional vector space in Section 1 and a real finitedimensional Hilbert space from Sections 2 onward (e.g., \mathbb{R}^{n} with the Euclidean inner product is fine). While this class sticks to finite dimensions, virtually all of these results also apply to real (infinite-dimensional) Hilbert spaces, modulo minor adjustments detailed in the class book.

1.1 Optimization terminology and the extended real line

Notation 1.1 We will work with the extended real line, i.e., $[-\infty,+\infty]:=\mathbb{R} \cup\{-\infty,+\infty\}$. Algebra on this field follows most "natural" rules one could expect (e.g., for $x \in \mathbb{R}, x+\infty=\infty$). However, the following quantities are undefined:

- Any subtraction of infinities: " $+\infty-(+\infty)$ "
- Zero times infinity: " $0 \cdot(\pm \infty)$ "
- Any quotient of infinities: " $\pm \infty / \pm \infty, \pm \infty / \mp \infty, \ldots$ "

As a result, if we work with extended-real-valued functions, we must be sure to avoid anything which is undefined (e.g., the objective function $f(x)+g(x)$ could be undefined if there exists z such that $g(z)=-\infty$ and $f(z)=\infty$.)

[^0]Definition 1.2 Given a real vector space \mathcal{H}, a function $f: \mathcal{H} \rightarrow[-\infty,+\infty]$, and a set $C \subset \mathcal{H}$, consider the following optimization problem.

$$
\begin{equation*}
\underset{x \in C}{\operatorname{minimize}} f(x) \tag{1}
\end{equation*}
$$

We call f the objective function. We call C a constraint. For any $x \in C$, we say x is feasible. Otherwise, for $x \in \mathbb{R}^{n} \backslash C, x$ is infeasible. If a point $x^{*} \in C$ satisfies

$$
\begin{equation*}
(\forall x \in C) \quad f\left(x^{*}\right) \leq f(x), \tag{2}
\end{equation*}
$$

we call x^{*} a solution to the optimization problem (1).
For this class, we consider minimization; to maximize f, just use the objective function $-f$.
Definition 1.3 For $I \subset[-\infty,+\infty], a \in[-\infty,+\infty]$ is a lower bound (upper bound) if, for every $\xi \in I, a \leq \xi(a \geq \xi)$. The greatest lower bound, or infimum, of the set I is denoted $\inf I$. Analogously, the least upper bound, or supremum, of the set I is denoted $\sup I$. In general, $\inf I, \sup I \in[-\infty,+\infty]$. If, additionally, $\inf I \in I(\sup I \in I)$, we call it the minimum (maximum), and denote it $\min I(\max I)$. In these cases, we say the infimum (supremum) is attained.

A few things to mention:
(i) For $I \neq \varnothing$, we have $\inf I \leq \sup I$. For the empty set, $\inf \varnothing=+\infty$ and $\sup \varnothing=-\infty$.
(ii) While the inf and sup are always defined, max and min may not exist (e.g., consider $I=(0,1)$ has $\inf I=0$ and $\sup I=1$. However, since $0,1 \notin I$, neither $\max I$ nor min I exist.)
(iii) Let $f: \mathbb{R}^{n} \rightarrow[-\infty,+\infty]$. We adopt the notation that $\inf _{x \in C} f(x)=\inf \{f(x) \mid x \in C\}$.
(iv) It is common in optimization literature to abuse notation, and use

$$
\begin{equation*}
\min _{x \in C} f(x) \tag{3}
\end{equation*}
$$

to describe the optimization problem (1). Technically, $\min _{x \in C} f(x)$ is not an optimization problem - it is the optimal value of the objective function at a solution, which may or may not exist.

The following theorem is often used as a tool to ensure that a solution to an optimization problem exists. Regretfully, this class does not have enough time to detail the topics of compact/closed/lsc. However, since the following theorem is referenced a few times in the class, I will provide its statement here. ${ }^{1}$

Theorem 1.4 (Weierstraß) Let $f: \mathcal{H} \rightarrow[-\infty,+\infty]$ be lower semicontinuous and let C be a compact subset of \mathcal{H}. Suppose that $C \cap \operatorname{dom} f \neq \varnothing$. Then f achieves its infimum over C.

[^1]Definition 1.5 Let $f: \mathcal{H} \rightarrow[-\infty,+\infty]$. We will use the following terms.
(i) The domain of f is

$$
\begin{equation*}
\operatorname{dom} f=\{x \in \mathcal{H} \mid f(x)<+\infty\} \tag{4}
\end{equation*}
$$

(ii) The epigraph of f is

$$
\begin{equation*}
\text { epi } f=\{(x, \xi) \in \mathcal{H} \times \mathbb{R} \mid f(x) \leq \xi\} \tag{5}
\end{equation*}
$$

(iii) The function f is proper if $\operatorname{dom} f \neq \varnothing$ and it never outputs the value $-\infty$ (i.e., $-\infty \notin f(\mathcal{H})$).
(iv) The function f is lower semicontinuous (sometimes abbreviated "lsc") at $x \in \mathcal{H}$ if, for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ satisfying $x_{n} \rightarrow x$, we have $f(x) \leq \liminf f\left(x_{n}\right)$

For this class, we will predominantly consider proper and lsc functions. A few things to note about the lsc assumption: (1) every continuous function is lsc, and (2) lower semicontinuity basically allows for a jump-discontinuity to occur at $x \in \mathcal{H}$, but requires that f takes the lowest possible limiting value at x (cf. the figures drawn in class, or here ${ }^{2}$).

1.2 Inner product and norms

Definition 1.6 Let \mathcal{H} be a real finite-dimensional vector space. A scalar product (sometimes called inner product) is a function $\langle\cdot \mid \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ which satisfies the following properties.
(i) $(\forall x \in \mathcal{H} \backslash\{0\}) \quad\langle x \mid x\rangle>0$
(ii) $(\forall x, y \in \mathcal{H}) \quad\langle x \mid y\rangle=\langle y \mid x\rangle$
(iii) $(\forall x, y, z \in \mathcal{H})(\forall \alpha \in \mathbb{R}) \quad\langle\alpha x+y \mid z\rangle=\alpha\langle x \mid z\rangle+\langle y \mid z\rangle$

Exercise 1.7 Let $\mathbf{0} \in \mathcal{H}$ be the zero element of \mathcal{H}. Show that, for every $x \in \mathcal{H},\langle\mathbf{0} \mid x\rangle=0$.
Exercise 1.8 Consider $\mathcal{H}=\mathbb{R}^{n}$. For two vectors $x, y \in \mathbb{R}^{n}$, the dot product is given by $\langle x \mid y\rangle=x^{\top} y$. Show that the dot product on \mathbb{R}^{n} is a scalar product.

Exercise 1.9 Consider the vector space of matrices $\mathbb{R}^{n \times n}$. For two matrices $A=\left(a_{i, j}\right)_{1 \leq i, j \leq n}$ and $B=\left(b_{i, j}\right)_{1 \leq i, j \leq n}$, the Frobenius inner product is given by

$$
\begin{equation*}
\langle A \mid B\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} b_{i, j} \tag{6}
\end{equation*}
$$

Show (6) is an inner product.

[^2]Proposition 1.10 (Cauchy-Schwarz) For every $x, y \in \mathcal{H}$,

$$
\begin{equation*}
\langle x \mid y\rangle^{2} \leq\langle x \mid x\rangle\langle y \mid y\rangle . \tag{7}
\end{equation*}
$$

Proof. If $y=0$, (7) holds. Now suppose that $y \neq 0$. By Definition 1.6, $\langle y \mid y\rangle>0$. Set $\alpha=$ $\langle x \mid y\rangle /\langle y \mid y\rangle$. First, we find

$$
\begin{align*}
0 & \leq\langle x-\alpha y \mid x-\alpha y\rangle \tag{8}\\
& =\langle x \mid x\rangle-2 \alpha\langle x \mid y\rangle+\alpha^{2}\langle y \mid y\rangle \tag{9}\\
& =\langle x \mid x\rangle-2 \alpha\langle x \mid y\rangle+\alpha\langle x \mid y\rangle \tag{10}\\
& =\langle x \mid x\rangle-\alpha\langle x \mid y\rangle . \tag{11}
\end{align*}
$$

Rearranging the inequality, we find that

$$
\begin{align*}
\frac{\langle x \mid y\rangle^{2}}{\langle y \mid y\rangle} & =\alpha\langle x \mid y\rangle \leq\langle x \mid x\rangle \tag{12}\\
\Leftrightarrow \quad\langle x \mid y\rangle^{2} & \leq\langle y \mid y\rangle\langle x \mid x\rangle . \tag{13}
\end{align*}
$$

Definition 1.11 Let \mathcal{H} be a real finite-dimensional vector space. A function $\|\cdot\|: \mathcal{H} \rightarrow \mathbb{R}$ is a norm if the following hold.
(i) $(\forall x \in \mathcal{H}) \quad\|x\|=0 \Rightarrow x=0$
(ii) $(\forall x, y \in \mathcal{H}) \quad\|x+y\| \leq\|x\|+\|y\|$
(iii) $(\forall x \in \mathcal{H})(\forall \alpha \in \mathcal{H}) \quad\|\alpha x\|=|\alpha|\|x\|$

A norm is a way to measure magnitude of vectors, or the distance from one vector to another $\|x-y\|$.

Exercise 1.12 Let \mathcal{H} be a real finite-dimensional vector space, and let $\langle\cdot \mid \cdot\rangle$ be a scalar product on \mathcal{H}. Show that the norm defined by

$$
\begin{equation*}
\|\cdot\|: \mathcal{H} \rightarrow \mathbb{R}: x \mapsto \sqrt{\langle x \mid x\rangle} \tag{14}
\end{equation*}
$$

satisfies the properties in Definition 1.11.
The Euclidean norm on \mathbb{R}^{n}, given by $\left(\xi_{1}, \ldots, \xi_{n}\right) \mapsto \sqrt{\xi_{1}^{2}+\cdots+\xi_{n}^{2}}$, arises from the dot product. Exercise 1.12 yields the following formulation of the Cauchy-Schwarz inequality

$$
\begin{equation*}
(\forall x, y \in \mathcal{H}) \quad\langle x \mid y\rangle \leq\|x\|\|y\| . \tag{C-S}
\end{equation*}
$$

While the actual definition can get quite technical, for our class, when we say "Hilbert space", we are referring to the finite-dimensional vector space \mathcal{H}, equipped with a scalar product $\langle\cdot \mid \cdot\rangle$ and a norm who arises from the scalar product via $\|\cdot\|=\sqrt{\langle\cdot \mid \cdot\rangle}$. Some examples are \mathbb{R}^{n} under the Euclidean inner product, or the space of real $n \times m$ matrices under the Frobenius inner product.

Exercise 1.13 Let $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. Show that

$$
\begin{equation*}
2 x_{1}-x_{2}^{4}+6 x_{3} \leq 4 \sqrt{x_{1}^{2}+x_{2}^{8}+9 x_{3}^{2}} \tag{15}
\end{equation*}
$$

Can the coefficient 4 in (15) be reduced?

[^0]: *Please report typos/errors found in these notes. Homework solutions should be handed in to my office ZIB 3107.

[^1]: ${ }^{1}$ Write me if you are interested in learning more about existence of solutions to optimization problems! For unbounded problems, analytic notions of "coercivity" and "recession cones" can also yield existence results.

[^2]: ${ }^{2}$ https://en.wikipedia.org/wiki/Semi-continuity\#/media/File:Lower_semi.svg

