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1 Introduction

These notes are supplementary material to a “crash course” I am teaching in May of 2023. The
topic is proximity operators and nonsmooth convex optimization. These notes are not meant to be
used as a standalone resource. Please cite peer-reviewed material. The reference book for this class
is Convex Analysis and Monotone Operator Theory, 2nd edition, by Heinz H. Bauschke and Patrick
L. Combettes, published by Springer.

If unspecified, H is a real finite-dimensional vector space in Section 1 and a real finite-
dimensional Hilbert space from Sections 2 onward (e.g., Rn with the Euclidean inner product
is fine). While this class sticks to finite dimensions, virtually all of these results also apply to real
(infinite-dimensional) Hilbert spaces, modulo minor adjustments detailed in the class book.

1.1 Optimization terminology and the extended real line

Notation 1.1 We will work with the extended real line, i.e., [−∞,+∞] := R ∪ {−∞,+∞}. Al-
gebra on this field follows most “natural” rules one could expect (e.g., for x ∈ R, x + ∞ = ∞).
However, the following quantities are undefined:

• Any subtraction of infinities: “+∞− (+∞)”

• Zero times infinity: “0 · (±∞)”

• Any quotient of infinities: “±∞/±∞, ±∞/∓∞, . . . ”

As a result, if we work with extended-real-valued functions, we must be sure to avoid anything
which is undefined (e.g., the objective function f(x) + g(x) could be undefined if there exists z
such that g(z) = −∞ and f(z) = ∞.)

*Please report typos/errors found in these notes. Homework solutions should be handed in to my office ZIB 3107.
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Definition 1.2 Given a real vector space H, a function f : H → [−∞,+∞], and a set C ⊂ H,
consider the following optimization problem.

minimize
x∈C

f(x) (1)

We call f the objective function. We call C a constraint. For any x ∈ C, we say x is feasible.
Otherwise, for x ∈ Rn \ C, x is infeasible. If a point x∗ ∈ C satisfies

(∀x ∈ C) f(x∗) ≤ f(x), (2)

we call x∗ a solution to the optimization problem (1).

For this class, we consider minimization; to maximize f , just use the objective function −f .

Definition 1.3 For I ⊂ [−∞,+∞], a ∈ [−∞,+∞] is a lower bound (upper bound) if, for every
ξ ∈ I, a ≤ ξ (a ≥ ξ). The greatest lower bound, or infimum, of the set I is denoted inf I.
Analogously, the least upper bound, or supremum, of the set I is denoted sup I. In general,
inf I, sup I ∈ [−∞,+∞]. If, additionally, inf I ∈ I (sup I ∈ I), we call it the minimum (maximum),
and denote it min I (max I). In these cases, we say the infimum (supremum) is attained.

A few things to mention:

(i) For I �= ∅, we have inf I ≤ sup I. For the empty set, inf ∅ = +∞ and sup∅ = −∞.

(ii) While the inf and sup are always defined, max and min may not exist (e.g., consider I = (0, 1)
has inf I = 0 and sup I = 1. However, since 0, 1 �∈ I, neither max I nor min I exist.)

(iii) Let f : Rn → [−∞,+∞]. We adopt the notation that infx∈C f(x) = inf{f(x) |x ∈ C}.

(iv) It is common in optimization literature to abuse notation, and use

min
x∈C

f(x) (3)

to describe the optimization problem (1). Technically, minx∈C f(x) is not an optimization
problem – it is the optimal value of the objective function at a solution, which may or may
not exist.

The following theorem is often used as a tool to ensure that a solution to an optimization
problem exists. Regretfully, this class does not have enough time to detail the topics of com-
pact/closed/lsc. However, since the following theorem is referenced a few times in the class, I will
provide its statement here.1

Theorem 1.4 (Weierstraß) Let f : H → [−∞,+∞] be lower semicontinuous and let C be a compact
subset of H. Suppose that C ∩ dom f �= ∅. Then f achieves its infimum over C.

1Write me if you are interested in learning more about existence of solutions to optimization problems! For un-
bounded problems, analytic notions of “coercivity” and “recession cones” can also yield existence results.
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Definition 1.5 Let f : H → [−∞,+∞]. We will use the following terms.

(i) The domain of f is

dom f =
�
x ∈ H

�� f(x) < +∞
�

(4)

(ii) The epigraph of f is

epi f =
�
(x, ξ) ∈ H× R

�� f(x) ≤ ξ
�

(5)

(iii) The function f is proper if dom f �= ∅ and it never outputs the value −∞ (i.e., −∞ �∈ f(H)).

(iv) The function f is lower semicontinuous (sometimes abbreviated “lsc”) at x ∈ H if, for every
sequence (xn)n∈N satisfying xn → x, we have f(x) ≤ lim inf f(xn)

For this class, we will predominantly consider proper and lsc functions. A few things to note
about the lsc assumption: (1) every continuous function is lsc, and (2) lower semicontinuity basi-
cally allows for a jump-discontinuity to occur at x ∈ H, but requires that f takes the lowest possible
limiting value at x (cf. the figures drawn in class, or here2).

1.2 Inner product and norms

Definition 1.6 Let H be a real finite-dimensional vector space. A scalar product (sometimes called
inner product) is a function �· | ·� : H×H → R which satisfies the following properties.

(i) (∀x ∈ H \ {0}) �x | x� > 0

(ii) (∀x, y ∈ H) �x | y� = �y | x�

(iii) (∀x, y, z ∈ H)(∀α ∈ R) �αx+ y | z� = α�x | z�+ �y | z�

Exercise 1.7 Let 0 ∈ H be the zero element of H. Show that, for every x ∈ H, �0 | x� = 0.

Exercise 1.8 Consider H = Rn. For two vectors x, y ∈ Rn, the dot product is given by �x | y� = x�y.
Show that the dot product on Rn is a scalar product.

Exercise 1.9 Consider the vector space of matrices Rn×n. For two matrices A = (ai,j)1≤i,j≤n and
B = (bi,j)1≤i,j≤n, the Frobenius inner product is given by

�A | B� =
n�

i=1

n�

j=1

ai,jbi,j (6)

Show (6) is an inner product.

2https://en.wikipedia.org/wiki/Semi-continuity#/media/File:Lower_semi.svg
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Proposition 1.10 (Cauchy-Schwarz) For every x, y ∈ H,

�x | y�2 ≤ �x | x��y | y�. (7)

Proof. If y = 0, (7) holds. Now suppose that y �= 0. By Definition 1.6, �y | y� > 0. Set α =
�x | y�/�y | y�. First, we find

0 ≤ �x− αy | x− αy� (8)

= �x | x� − 2α�x | y�+ α2�y | y� (9)

= �x | x� − 2α�x | y�+ α�x | y� (10)

= �x | x� − α�x | y�. (11)

Rearranging the inequality, we find that

�x | y�2
�y | y� = α�x | y� ≤ �x | x� (12)

⇔ �x | y�2 ≤ �y | y��x | x�. (13)

Definition 1.11 Let H be a real finite-dimensional vector space. A function � ·� : H → R is a norm
if the following hold.

(i) (∀x ∈ H) �x� = 0 ⇒ x = 0

(ii) (∀x, y ∈ H) �x+ y� ≤ �x�+ �y�

(iii) (∀x ∈ H)(∀α ∈ H) �αx� = |α|�x�

A norm is a way to measure magnitude of vectors, or the distance from one vector to another
�x− y�.

Exercise 1.12 Let H be a real finite-dimensional vector space, and let �· | ·� be a scalar product on
H. Show that the norm defined by

� · � : H → R : x �→
�
�x | x� (14)

satisfies the properties in Definition 1.11.

The Euclidean norm on Rn, given by (ξ1, . . . , ξn) �→
�
ξ21 + · · ·+ ξ2n, arises from the dot product.

Exercise 1.12 yields the following formulation of the Cauchy-Schwarz inequality

(∀x, y ∈ H) �x | y� ≤ �x��y�. (C-S)

While the actual definition can get quite technical, for our class, when we say “Hilbert space”, we
are referring to the finite-dimensional vector space H, equipped with a scalar product �· | ·� and
a norm who arises from the scalar product via � · � =

�
�· | ·�. Some examples are Rn under the

Euclidean inner product, or the space of real n×m matrices under the Frobenius inner product.
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Exercise 1.13 Let (x1, x2, x3) ∈ R3. Show that

2x1 − x42 + 6x3 ≤ 4
�
x21 + x82 + 9x23. (15)

Can the coefficient 4 in (15) be reduced?
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