A “crash course” in nonsmooth convex optimization

Zev Woodstock
woodstock(at)zib.de*

1 Introduction

These notes are supplementary material to a “crash course” I am teaching in May of 2023. The
topic is proximity operators and nonsmooth convex optimization. These notes are not meant to be
used as a standalone resource. Please cite peer-reviewed material. The reference book for this class
is Convex Analysis and Monotone Operator Theory, 2nd edition, by Heinz H. Bauschke and Patrick
L. Combettes, published by Springer.

If unspecified, H is a real finite-dimensional vector space in Section 1 and a real finite-
dimensional Hilbert space from Sections 2 onward (e.g., R™ with the Fuclidean inner product
is fine). While this class sticks to finite dimensions, virtually all of these results also apply to real
(infinite-dimensional) Hilbert spaces, modulo minor adjustments detailed in the class book.

1.1 Optimization terminology and the extended real line

Notation 1.1 We will work with the extended real line, i.e., [—0co0, +o0] := RU {—o00, +o0}. Al-
gebra on this field follows most “natural” rules one could expect (e.g., for x € R, x + co = 00).
However, the following quantities are undefined:

* Any subtraction of infinities: “4-o00 — (400)”

* Zero times infinity: “0 - (£00)”

”

* Any quotient of infinities: “+oo/ + oo, oo/ F o0, ...

As a result, if we work with extended-real-valued functions, we must be sure to avoid anything
which is undefined (e.g., the objective function f(x) + g(z) could be undefined if there exists z
such that g(z) = —oo and f(z) = c0.)

“Please report typos/errors found in these notes. Homework solutions should be handed in to my office ZIB 3107.



Definition 1.2 Given a real vector space #, a function f: H — [—o0,+oc0], and a set C C H,
consider the following optimization problem.

minimize f(z) @8]
zeC

We call f the objective function. We call C' a constraint. For any = € C, we say x is feasible.
Otherwise, for x € R™ \ C, z is infeasible. If a point z* € C satisfies

(Ve e ) [f(z") < fla), 2)

we call z* a solution to the optimization problem (1).

For this class, we consider minimization; to maximize f, just use the objective function — f.

Definition 1.3 For I C [—00,+00], a € [—00, +0] is a lower bound (upper bound) if, for every
Eel,a<¢(a>€). The greatest lower bound, or infimum, of the set I is denoted inf I.
Analogously, the least upper bound, or supremum, of the set I is denoted sup /. In general,
inf I, sup I € [—o0, +0o0]|. If, additionally, inf I € I (sup I € I), we call it the minimum (maximum),
and denote it min I (max I). In these cases, we say the infimum (supremum) is attained.

A few things to mention:

(i) For I # @, we have inf I < sup I. For the empty set, inf & = +00 and sup @ = —cc.

(i) While the inf and sup are always defined, max and min may not exist (e.g., consider I = (0, 1)
has inf I = 0 and sup I = 1. However, since 0,1 ¢ I, neither max I nor min I exist.)

(iii) Let f: R™ — [—o00, 4+00]. We adopt the notation that inf,cc f(z) = inf{f(z) |z € C}.
(iv) Itis common in optimization literature to abuse notation, and use

min f(x 3
min /(@) ®)
to describe the optimization problem (1). Technically, min,cc f(z) is not an optimization
problem - it is the optimal value of the objective function at a solution, which may or may
not exist.

The following theorem is often used as a tool to ensure that a solution to an optimization
problem exists. Regretfully, this class does not have enough time to detail the topics of com-
pact/closed/lsc. However, since the following theorem is referenced a few times in the class, I will
provide its statement here.'

Theorem 1.4 (Weierstraly) Let f: H — [—o0, +o0] be lower semicontinuous and let C be a compact
subset of H. Suppose that C Ndom f # @. Then f achieves its infimum over C.

IWrite me if you are interested in learning more about existence of solutions to optimization problems! For un-
bounded problems, analytic notions of “coercivity” and “recession cones” can also yield existence results.



Definition 1.5 Let f: H — [—o0, +00]. We will use the following terms.

(i) The domain of f is

dom f = {z € H | f(z) < +o0} 4
(ii) The epigraph of f is

epif = {(z,§) e H xR | f(z) < &} (5)

(iii) The function f is proper if dom f # & and it never outputs the value —oco (i.e., —oco & f(H)).
(iv) The function f is lower semicontinuous (sometimes abbreviated “Isc”) at « € H if, for every

sequence (x,,)nen satisfying x,, — z, we have f(x) < liminf f(z,)

For this class, we will predominantly consider proper and Isc functions. A few things to note
about the Isc assumption: (1) every continuous function is Isc, and (2) lower semicontinuity basi-
cally allows for a jump-discontinuity to occur at = € ‘H, but requires that f takes the lowest possible
limiting value at z (cf. the figures drawn in class, or here?).

1.2 Inner product and norms

Definition 1.6 Let 7 be a real finite-dimensional vector space. A scalar product (sometimes called
inner product) is a function (- | -): H x H — R which satisfies the following properties.

() (Ve H\{0}) (x|z)>0
(i) (Ve,yeH) (z]y) =yl
(i) (Vz,y,z € H) (Vo €R) (az+y|2) =alz|2)+ (y|2)
Exercise 1.7 Let 0 € H be the zero element of 7. Show that, for every x € H, (0 | z) = 0.

Exercise 1.8 Consider # = R". For two vectors x,y € R", the dot product is given by (z | y) = = y.
Show that the dot product on R™ is a scalar product.

Exercise 1.9 Consider the vector space of matrices R"*". For two matrices A = (a;)i<i j<n and
B = (bi,j)1<i j<n, the Frobenius inner product is given by

<A | B> = Z Z aiyjbi’j (6)
=1 j=1

Show (6) is an inner product.

*nttps://en.wikipedia.org/wiki/Semi-continuity#/media/File:Lower_semi.svg



Proposition 1.10 (Cauchy-Schwarz) For every x,y € H,
(@|y)? < (@]z)(yy). )

Proof. If y = 0, (7) holds. Now suppose that y # 0. By Definition 1.6, (y |y) > 0. Set o =
(x| y)y/{y | y). First, we find

0<(z—-ay|z—ay) )
= (x| ) —2a(z | y) +*(y | y) 9)
= (@ |z) = 2a(x [y) +afz|y) (10)
= (x| z) —alz]y). (1
Rearranging the inequality, we find that
2
<<Z||i/>> =alz|y) < () (12)
& (z]|y)” < (yly)z|) (13)
0
Definition 1.11 Let # be a real finite-dimensional vector space. A function || - ||: # — R is a norm
if the following hold.

A (VzxeH) |z[|=0=2=0

(i) (Ve,y e H) o +yll <=l + [yl

(iii)) (Ve e H)Va e H) |az| = |a||z]
A norm is a way to measure magnitude of vectors, or the distance from one vector to another
[l —yl.

Exercise 1.12 Let H be a real finite-dimensional vector space, and let (- | -) be a scalar product on
‘H. Show that the norm defined by

|-1: H—=R:zw— /(x| (14)

satisfies the properties in Definition 1.11.

The Euclidean norm on R”, given by (&1,...,&,) — /&2 + -+ + &2, arises from the dot product.
Exercise 1.12 yields the following formulation of the Cauchy-Schwarz inequality

(Vz,y e M) (= [y) < [=llllyll (C-S)

While the actual definition can get quite technical, for our class, when we say “Hilbert space”, we
are referring to the finite-dimensional vector space #, equipped with a scalar product (- | -) and
a norm who arises from the scalar product via || - || = /(- | -). Some examples are R" under the
Euclidean inner product, or the space of real n x m matrices under the Frobenius inner product.
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Exercise 1.13 Let (21,72, 23) € R3. Show that

2x1 — x% + 63 < 4\/33% + x% + 996%. (15)

Can the coefficient 4 in (15) be reduced?



