2 Convexity

Definition 2.1 A set $C \subset \mathcal{H}$ is convex if, for every $x, y \in C$

$$
\begin{equation*}
(\forall \alpha \in] 0,1[) \quad \alpha x+(1-\alpha) y \in C \tag{16}
\end{equation*}
$$

A function f is convex if epi f is convex.
Proposition $2.2 f: \mathcal{H} \rightarrow[-\infty,+\infty]$ is convex if and only if

$$
\begin{equation*}
(\forall x, y \in \operatorname{dom} f) \quad(\forall \alpha \in] 0,1[) \quad f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) . \tag{17}
\end{equation*}
$$

Proof. First, we note that if f is identically $+\infty$, then $\operatorname{dom} f=\varnothing$ if and only if epi $f=\varnothing$, so (17) is vacuously true. Now assume that $\operatorname{dom} f \neq \varnothing$. Let (x, ξ) and (y, η) be in epi f and let $\alpha \in] 0,1[$. (\Rightarrow) Assume that epi f is convex. Then

$$
\begin{equation*}
\alpha(x, \xi)+(1-\alpha)(y, \eta)=(\alpha x+(1-\alpha) y, \alpha \xi+(1-\alpha) \eta) \in \operatorname{epi} f . \tag{18}
\end{equation*}
$$

Therefore, $f(\alpha x+(1-\alpha) y) \leq \alpha \xi+(1-\alpha \eta$. Taking the limit as $\xi \searrow f(x)$ and $\eta \searrow f(y)$ yields (17). (\Leftarrow) Assume that (17) holds. By definition, $f(x) \leq \xi$ and $f(y) \leq \eta$. So, by (17),

$$
\begin{align*}
f(\alpha x+(1-\alpha) y) & \leq \alpha f(x)+(1-\alpha) f(y) \tag{19}\\
& \leq \alpha \xi+(1-\alpha) \eta \tag{20}
\end{align*}
$$

Therefore, $(\alpha x+(1-\alpha) y, \alpha \xi+(1-\alpha) \eta) \in \operatorname{epi} f$ which completes the proof.
Definition 2.3 Let $\rho>0$ and let $x \in \mathcal{H}$. A closed ball of radius ρ is $B(x ; \rho)=\{z \in \mathcal{H} \mid\|x-z\| \leq \rho\}$.
Definition 2.4 Let $f: \mathcal{H} \rightarrow[-\infty,+\infty]$ and let $x \in \mathcal{H} . x$ is a local minimizer of f if there exists $\rho>0$ such that

$$
\begin{equation*}
(\forall z \in \mathcal{H} \cap B(x ; \rho)) \quad f(x) \leq f(z) . \tag{21}
\end{equation*}
$$

x is a global minimizer of f if

$$
\begin{equation*}
(\forall z \in \mathcal{H}) \quad f(x) \leq f(z) . \tag{22}
\end{equation*}
$$

Fact 2.5 Let f be a convex and proper function. Then every local minimizer is a global minimizer.
Proof. This is left as an exercise (easier to prove after we learn about convex subdifferentials).
Definition 2.6 Let $C \subset \mathcal{H}$ be nonempty.
(i) The indicator function of C is

$$
\iota_{C}: \mathcal{H} \rightarrow[-\infty,+\infty]: x \mapsto \begin{cases}0 & \text { if } x \in C \tag{23}\\ +\infty & \text { if } x \notin C .\end{cases}
$$

(ii) Suppose that C is also closed. A projection of $x \in \mathcal{H}$ onto C is a solution to the minimization problem

$$
\begin{equation*}
\underset{z \in C}{\operatorname{minimize}}\|x-z\| \text {. } \tag{24}
\end{equation*}
$$

A solution to (24) is a "closest" point to x which resides in C.
Fact 2.7 Let $C \subset \mathcal{H}$ and let $x \in \mathcal{H}$.
(i) Without loss of generality, constrained optimization can be rephrased as unconstrained optimization via changing the objective function:

$$
\begin{equation*}
\inf _{x \in C} f(x)=\inf _{x \in \mathcal{H}} f(x)+\iota_{C}(x) . \tag{25}
\end{equation*}
$$

The objective function $f+\iota_{C}$ on the righthand side, although a bit fancier, allows us to rephrase the constraint on the lefthand side.
(ii) C is convex if and only if its indicator function ι_{C} is convex.
(iii) C is closed if and only if its indicator function ι_{C} is lsc.
(iv) Suppose that C is closed. Then a solution to (24) exists.
(v) Suppose that C is convex. If a solution to (24) exists, it is guaranteed to be unique.

The proofs of (ii) and (iii) follow from the fact that epi $C=C \times[0,+\infty[$. Loosely speaking, the proof of (iv) follows from the Weierstraß theorem (compactness is achieved by intersecting C with $\{y \in \mathcal{H} \mid\|x-y\| \leq \eta\}$ for $\eta>0$) and (v) follows from the fact that the norm is strictly convex - (a notion we have not yet defined, but we will see later in Definition 4.1).

Definition 2.8 Let $C \subset \mathcal{H}$ be nonempty, closed, and convex. In view of Fact 2.7(iv)-(v), for every $x \in \mathcal{H}$ there is a unique point, $\operatorname{Proj}_{C}(x) \in \mathcal{H}$, which solves (24). This implicitly defines the projection operator of C.

$$
\begin{equation*}
\operatorname{Proj}_{C}: \mathcal{H} \rightarrow \mathcal{H}: x \mapsto \operatorname{Proj}_{C}(x) \quad \text { (solution to (24)) } \tag{26}
\end{equation*}
$$

Note: if $x \in C$, then $\operatorname{Proj}_{C} x=x$.
For all of the algorithms in this course, we will focus on functions from the following class

$$
\begin{equation*}
\left.\left.\Gamma_{0}(\mathcal{H})=\{f: \mathcal{H} \rightarrow]-\infty,+\infty\right] \mid f \text { is proper, lower semicontinuous, and convex }\right\} . \tag{27}
\end{equation*}
$$

The following functions live in $\Gamma_{0}(\mathcal{H})$:
(i) Exponentials: e^{x}
(ii) Log-barriers $f(x)= \begin{cases}-\ln (x) & \text { if } x>0 \\ +\infty & \text { otherwise. }\end{cases}$
(iii) Any norm: $\|\cdot\|$ (e.g., $\|\cdot\|_{1}$ which promotes sparsity, $\|\cdot\|_{\text {nuclear }}$ which promotes low-rank)
(iv) Hinge-Loss, ReLU, KL-Divergence, ...
(v) Given a collection of functions $\left(f_{i}\right)_{i=1}^{m}$ in $\Gamma_{0}(\mathcal{H})$, we can remain in $\Gamma_{0}(\mathcal{H})$ via the following operations.
(a) $\max \left\{f_{1}, \ldots, f_{m}\right\}$
(b) Positive linear combinations: $\lambda_{1} f_{1}+\cdots+\lambda_{m} f_{m}$, where $\left\{\lambda_{i}\right\}_{i=1}^{m}$ are positive.
(c) Let \mathcal{H}_{1} and \mathcal{H}_{2} be two finite-dimensional real vector spaces. Let $b \in \mathcal{H}_{2}$ and let $A: \mathcal{H}_{1} \rightarrow$ \mathcal{H}_{2} be a linear operator (e.g., a matrix from \mathbb{R}^{n} to \mathbb{R}^{m}). If $f_{1} \in \Gamma_{0}\left(\mathcal{H}_{2}\right)$, then $g(x)=$ $f_{1}(A x+b) \in \Gamma_{0}\left(\mathcal{H}_{1}\right)$.

Exercise 2.9 The Minkowski sum of two subsets A, B of \mathcal{H} is given by

$$
\begin{equation*}
A+B=\{a+b \mid a \in A \text { and } b \in B\} . \tag{28}
\end{equation*}
$$

Assume that A and B are convex. Prove that $A+B$ is convex.
Exercise 2.10 Show that the norm $\|\cdot\|$ is convex using Definition 1.11.

