
2 Convexity

Definition 2.1 A set C ⊂ H is convex if, for every x, y ∈ C

(∀α ∈ ]0, 1[) αx+ (1− α)y ∈ C. (16)

A function f is convex if epi f is convex.

Proposition 2.2 f : H → [−∞,+∞] is convex if and only if

(∀x, y ∈ dom f) (∀α ∈ ]0, 1[) f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (17)

Proof. First, we note that if f is identically +∞, then dom f = ∅ if and only if epi f = ∅, so (17) is
vacuously true. Now assume that dom f �= ∅. Let (x, ξ) and (y, η) be in epi f and let α ∈ ]0, 1[.
(⇒) Assume that epi f is convex. Then

α(x, ξ) + (1− α)(y, η) = (αx+ (1− α)y,αξ + (1− α)η) ∈ epi f. (18)

Therefore, f(αx+(1−α)y) ≤ αξ+(1−αη. Taking the limit as ξ � f(x) and η � f(y) yields (17).
(⇐) Assume that (17) holds. By definition, f(x) ≤ ξ and f(y) ≤ η. So, by (17),

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (19)

≤ αξ + (1− α)η. (20)

Therefore, (αx+ (1− α)y,αξ + (1− α)η) ∈ epi f which completes the proof.

Definition 2.3 Let ρ > 0 and let x ∈ H. A closed ball of radius ρ is B(x; ρ) =
�
z ∈ H

�� �x− z� ≤ ρ
�

.

Definition 2.4 Let f : H → [−∞,+∞] and let x ∈ H. x is a local minimizer of f if there exists
ρ > 0 such that

(∀z ∈ H ∩B(x; ρ)) f(x) ≤ f(z). (21)

x is a global minimizer of f if

(∀z ∈ H) f(x) ≤ f(z). (22)

Fact 2.5 Let f be a convex and proper function. Then every local minimizer is a global minimizer.

Proof. This is left as an exercise (easier to prove after we learn about convex subdifferentials).

Definition 2.6 Let C ⊂ H be nonempty.

(i) The indicator function of C is

ιC : H → [−∞,+∞] : x �→
�
0 if x ∈ C

+∞ if x �∈ C.
(23)
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(ii) Suppose that C is also closed. A projection of x ∈ H onto C is a solution to the minimization
problem

minimize
z∈C

�x− z�. (24)

A solution to (24) is a “closest” point to x which resides in C.

Fact 2.7 Let C ⊂ H and let x ∈ H.

(i) Without loss of generality, constrained optimization can be rephrased as unconstrained opti-
mization via changing the objective function:

inf
x∈C

f(x) = inf
x∈H

f(x) + ιC(x). (25)

The objective function f + ιC on the righthand side, although a bit fancier, allows us to
rephrase the constraint on the lefthand side.

(ii) C is convex if and only if its indicator function ιC is convex.

(iii) C is closed if and only if its indicator function ιC is lsc.

(iv) Suppose that C is closed. Then a solution to (24) exists.

(v) Suppose that C is convex. If a solution to (24) exists, it is guaranteed to be unique.

The proofs of (ii) and (iii) follow from the fact that epiC = C × [0,+∞[. Loosely speaking, the
proof of (iv) follows from the Weierstraß theorem (compactness is achieved by intersecting C with�
y ∈ H

�� �x− y� ≤ η
�

for η > 0) and (v) follows from the fact that the norm is strictly convex – (a
notion we have not yet defined, but we will see later in Definition 4.1).

Definition 2.8 Let C ⊂ H be nonempty, closed, and convex. In view of Fact 2.7(iv)–(v), for every
x ∈ H there is a unique point, Proj C(x) ∈ H, which solves (24). This implicitly defines the
projection operator of C.

Proj C : H → H : x �→ Proj C(x) (solution to (24)) (26)

Note: if x ∈ C, then Proj Cx = x.

For all of the algorithms in this course, we will focus on functions from the following class

Γ0(H) =
�
f : H → ]−∞,+∞]

�� f is proper, lower semicontinuous, and convex
�
. (27)

The following functions live in Γ0(H):

(i) Exponentials: ex
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(ii) Log-barriers f(x) =

�
− ln(x) if x > 0

+∞ otherwise.

(iii) Any norm: � · � (e.g., � · �1 which promotes sparsity, � · �nuclear which promotes low-rank)

(iv) Hinge-Loss, ReLU, KL-Divergence, . . .

(v) Given a collection of functions (fi)
m
i=1 in Γ0(H), we can remain in Γ0(H) via the following

operations.

(a) max{f1, . . . , fm}
(b) Positive linear combinations: λ1f1 + · · ·+ λmfm, where {λi}mi=1 are positive.

(c) Let H1 and H2 be two finite-dimensional real vector spaces. Let b ∈ H2 and let A : H1 →
H2 be a linear operator (e.g., a matrix from Rn to Rm). If f1 ∈ Γ0(H2), then g(x) =
f1(Ax+ b) ∈ Γ0(H1).

Exercise 2.9 The Minkowski sum of two subsets A,B of H is given by

A+B =
�
a+ b

�� a ∈ A and b ∈ B
�
. (28)

Assume that A and B are convex. Prove that A+B is convex.

Exercise 2.10 Show that the norm � · � is convex using Definition 1.11.
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