2 Convexity

Definition 2.1 A set C' C H is convex if, for every z,y € C

(Va€]0,1)) az+ (1 —a)y € C. (16)
A function f is convex if epi f is convex.
Proposition 2.2 f: H — [—o0, +o0] is convex if and only if

(Vo,y edom f)  (Va€]0,1])  flaz+ (1 -a)y) < af(z)+ (1 - a)f(y) (17)
Proof. First, we note that if f is identically +oo, then dom f = @ if and only if epi f = &, so (17) is

vacuously true. Now assume that dom f # @. Let (z,¢) and (y,n) be in epi f and let « € ]0, 1[.
(=) Assume that epi f is convex. Then

a(z,§) + (1 —a)(y,n) = (ax + (1 — a)y,af + (1 —a)n) € epif. (18)

Therefore, f(ax+ (1 —a)y) < a&+ (1 — an. Taking the limit as £ ~\, f(z) and n \, f(y) yields (17).
(<) Assume that (17) holds. By definition, f(z) < ¢ and f(y) <. So, by (17),

flax+ (1 - a)y) <af(x)+(1—a)f(y) (19)
<af+ (1—a)n. (20)

Therefore, (ax + (1 — a)y, o€ + (1 — a)n) € epi f which completes the proof. [I
Definition 2.3 Let p > O and letz € H. A closed ball of radius pis B(z;p) = {z € H | ||z — z|| < p}.

Definition 2.4 Let f: H — [—o0,4+00] and let x € H. x is a local minimizer of f if there exists
p > 0 such that

(Vze HN B(z;p) [flx) < f(2). 2D
x is a global minimizer of f if
(VzeH) f(z)< [f(2) (22)

Fact 2.5 Let f be a convex and proper function. Then every local minimizer is a global minimizer.

Proof. This is left as an exercise (easier to prove after we learn about convex subdifferentials). [J

Definition 2.6 Let C' C H be nonempty.

(i) The indicator function of C'is

0 if xeC
:H — |—o0, C T 23
¢ (o0 Froc] : @ {+oo if ¢ C. (23)
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(i) Suppose that C is also closed. A projection of x € H onto C'is a solution to the minimization
problem

minimize |z — z||. (24)
zeC

A solution to (24) is a “closest” point to x which resides in C'

Fact 2.7 Let C C H and let x € H.

(i) Without loss of generality, constrained optimization can be rephrased as unconstrained opti-
mization via changing the objective function:

inf f(z) = inf f(2)+10() (25)

The objective function f + .o on the righthand side, although a bit fancier, allows us to
rephrase the constraint on the lefthand side.

(ii) C is convex if and only if its indicator function (¢ is convex.

(iii) C is closed if and only if its indicator function «¢ is Isc.

(iv) Suppose that C'is closed. Then a solution to (24) exists.

(v) Suppose that C' is convex. If a solution to (24) exists, it is guaranteed to be unique.
The proofs of (ii) and (iii) follow from the fact that epiC' = C x [0, 4o0[. Loosely speaking, the
proof of (iv) follows from the Weierstraf} theorem (compactness is achieved by intersecting C with

{y e ® |||z -yl <n} forn > 0)and (v) follows from the fact that the norm is strictly convex - (a
notion we have not yet defined, but we will see later in Definition 4.1).

Definition 2.8 Let C' C H be nonempty, closed, and convex. In view of Fact 2.7(iv)-(v), for every
x € H there is a unique point, Projc(z) € H, which solves (24). This implicitly defines the
projection operator of C.

Projc: H — H: x +— Projo(x) (solution to (24)) (26)

Note: if x € C, then Projcx = .

For all of the algorithms in this course, we will focus on functions from the following class
Lo(H) = {f: H — ]—00, +] ‘ [ is proper, lower semicontinuous, and convex}. 27)

The following functions live in T'g(H):

(i) Exponentials: e*



-1 if >0
(ii) Log-barriers f(z) = { n(z) if @ .

+o0o otherwise.
(iii) Any norm: | - || (e.g., || - |[1 which promotes sparsity, || - ||nuciear Which promotes low-rank)
(iv) Hinge-Loss, ReLU, KL-Divergence, ...

(v) Given a collection of functions (f;), in I'¢(#), we can remain in I'o(#) via the following
operations.

(a) maX{fl, cee 7fm}
(b) Positive linear combinations: A fi + - - - + Ay, fm, where {\;} | are positive.

(c) Let H, and H, be two finite-dimensional real vector spaces. Let b € Hs and let A: H; —
Ho be a linear operator (e.g., a matrix from R™ to R™). If f; € I'o(H2), then g(z) =
fl(Ax + b) € PO(Hl).

Exercise 2.9 The Minkowski sum of two subsets A, B of # is given by
A+B={a+b|acA and be Bj}. (28)
Assume that A and B are convex. Prove that A + B is convex.

Exercise 2.10 Show that the norm || - || is convex using Definition 1.11.



