
3 What is Differentiability?

There are a lot of ML engineers who brush off the mathematical details of what it means for a func-
tion to be differentiable. Algorithmic differentiation (sometimes misleadingly-called “automatic”
differentiation) is only guaranteed to work when certain theoretical conditions about the existence
of a gradient hold. This part of the class is dedicated to explaining that differentiability is not a
freebie.

To start our discussion on differentiability, we will begin with a few preliminaries from analysis.

Definition 3.1 Let A : H1 → H2. Then A is linear if, for every α ∈ R and every x, y ∈ H1,

A(λx) = λA(x) and A(x+ y) = A(x) +A(y). (29)

Theorem 3.2 (Riesz-Fréchet representation) Let A : H → R be linear. Then there exists a unique
vector u ∈ H such that, for every x ∈ H, A(x) = �u | x�.

Although at first-glance it looks unrelated, Theorem 3.2 is a central notion for defining the gradi-
ent. A necessary (albeit insufficient) condition for the existence of a gradient is the existence of a
directional derivative, defined below.

Definition 3.3 Let f : H → ]−∞,+∞] be proper. The directional derivative of f at x ∈ dom f in
the direction y ∈ H is

f �(x; y) = lim
α�0

f(x+ αy)− f(x)

α
. (30)

From Definition 3.3, we point out a few things.

(i) The limit in (30) might not exist.

(ii) If f is convex, then f �(x; y) ∈ [−∞,+∞].

(iii) Even if a directional derivative exists, it might not exist in R (since it could be +∞ or −∞).

Definition 3.4 Let x ∈ dom f . If f �(x; ·) is linear, we say f is differentiable at x. In this case, the
unique vector provided by Theorem 3.2 is called the gradient of f at x and denoted ∇f(x).

f �(x; ·) = lim
α�0

f(x+ α · )− f(x)

α
= �∇f(x) | ·� (31)

If f is differentiable at every x ∈ dom f , we say that f is differentiable.

Exercise 3.5 Verify that ∇(12� · �2)(x) = x.

All of the properties we know and love about differentiability (chain rule, product rule, etc.) have
to be proven. Here is an example below.
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Proposition 3.6 Let A : H1 → H2 be a linear operator (with adjoint denoted A∗), let b ∈ H2, and let
f : H → R be proper and differentiable. Set g = f(Ax+ b). Then g is differentiable and

∇g = A∗(∇f(A ·+b)). (32)

Proof. Since dom f = H2, dom g �= ∅ so we let x ∈ dom g. By definition,

g�(x; y) = lim
α�0

g(x+ αy)− g(x)

α
(33)

= lim
α�0

f(A(x+ αy) + b)− f(Ax+ b)

α
(34)

= lim
α�0

f(Ax+ b+ αAy)− f(Ax+ b)

α
(35)

= f �(Ax+ b;Ay). (36)

So the directional derivative of g exists. Now, since f is differentiable,

g�(x; y) = f �(Ax+ b;Ay) = �∇f(Ax+ b) | Ay� = �A∗(∇f(Ax+ b)) | y�. (37)

Hence the directional derivative of g is linear and g is differentiable. The specific form of the
gradient is constructed in (37)

Algorithmic differentiation tools use results like Proposition 3.6 to approximate a gradient of
a function by reading its machine code. However, these subroutines do not check the theoretical
conditions required for their theorems (e.g., f must be differentiable) – this must be done (and is
oftentimes unjustly ignored) by the user.

Definition 3.7 Let f be proper and differentiable. f is smooth (“L-smooth”) if there exists L > 0
such that

(∀x, y ∈ H) �∇f(x)−∇f(y) ≤ L�x− y�. (38)

Exercise 3.8 Construct a function which is differentiable and nonsmooth.

Proposition 3.9 Let f : H → ]−∞,+∞] be proper and convex. Then,

(∀x ∈ dom f)(∀y ∈ H) f �(x; y − x) + f(x) ≤ f(y). (39)

Proof. By Proposition 2.2, for every α ∈ ]0, 1[,

f(x+ α(y − x))− f(x) = f ((1− α)x+ αy)− f(x) (40)

≤ (1− α)f(x) + αf(y)− f(x) (41)

= α(f(y)− f(x)). (42)

Therefore,

f(x+ α(y − x))− f(x)

α
≤ f(y)− f(x). (43)

Taking the limit as α � 0 implies f �(x; y) ≤ f(y)− f(x), which in turn yields (39).
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Corollary 3.10 Let f : H → ]−∞,+∞] be proper and convex. If f is differentiable at an interior
point x of its domain, then

(∀y ∈ H) �y − x | ∇f(x)�+ f(x) ≤ f(y). (44)

When the lefthand side of (44) is viewed as a function of y, we see it is the first-order Taylor
series approximation of f . Therefore, it follows from (39) that a convex differentiable function
always remains above its first-order Taylor approximation! This is the motivating idea in defining
a (convex) subgradient3

Definition 3.11 Let f : H → ]−∞,+∞]. A vector g is a subgradient of f at x ∈ H if

(∀y ∈ H) �y − x | g�+ f(x) ≤ f(y). (45)

The subdifferential of f at x is the set of all subgradients, denoted ∂f(x).

Example 3.12 As shown in class,

∂(| · |)(x) =





−1 if x < 0

[−1, 1] if x = 0

1 if x > 0.

(46)

This leads to the following fundamental theorem for optimization.

Theorem 3.13 (Fermat’s Rule) Let f : H → ]−∞,+∞] be proper. Then x is a minimizer of f if and
only if 0 ∈ ∂f(x).

Proof. By definition,

0 ∈ ∂f(x) ⇔ (∀y ∈ H) �0 | y − x�+ f(x) ≤ f(y) (47)

⇔ (∀y ∈ H) f(x) ≤ f(y). (48)

Unlike differentiable functions, there are technical conditions we must check in order to get
the “standard” rules one would hope for. The following theorem demonstrates some conditions
required to simplify computing the subdifferential of a sum of functions.

3There are more general notions of subgradients (e.g., Clarke or Mordukhovich subdifferentials). For functions on
Γ0(H), these notions are usually all equivalent.
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Theorem 3.14 (Sum rule) Let f, g ∈ Γ0(H) and suppose that one of the following holds:

(i) The interior of dom g intersects with dom f

(ii) dom g = H

(iii) The relative interiors of dom f and dom g intersect.

Then ∂(f + g) = ∂f + ∂g.

Remark 3.15 If f is convex and differentiable at x ∈ H, then ∂f(x) = {∇f(x)}.
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