
4 Proximity Operators

We will refer to H as a “finite dimensional real Hilbert space.” When we say “Hilbert space,” we
are referring to both a vector space and an inner product (H, �· | ·�), which also gives rise to a norm
via � · � =

�
�· | ·� (see Exercise 1.12).

Definition 4.1 Let f : H →]−∞,+∞]. Then f is strictly convex if, for distinct points x, y ∈ H
(x �= y), we have

(∀α ∈]0, 1[) f(αx+ (1− α)y) < αf(x) + (1− α)f(y). (49)

Exercise 4.2 Let f : H →]−∞,+∞] be strictly convex and suppose that at least one minimizer
exists. Prove that the minimizer is unique.

Proposition 4.3 Let f ∈ Γ0(H) and let x ∈ H. The following optimization problem has a unique
solution

minimize
z∈H

f(z) +
1

2
�x− z�2 (∗)

The proof idea of Proposition 4.3 comes from the fact that the norm is strictly convex, which implies
that the objective function in (∗) is convex.

Definition 4.4 Let f ∈ Γ0(H) and let x ∈ H. The solution to (∗) is the proximal point of f at x,
denoted Prox f (x) ∈ H. This defines an operator Prox f : H → H where x maps to Prox f (x).

Example 4.5 Let C be a nonempty closed convex subset of H. Then, for x ∈ H, we have

min
z∈H

ιC(z) +
1

2
�x− z�2 = min

z∈C
1

2
�x− z�2. (50)

However, the minimizer of (50) will be the same as in (24). Therefore, the proximity operator of
ιC is actually just the projection operator!

Prox ιC = Proj C . (51)

Exercise 4.6 Let f ∈ Γ0(H) and let x, p ∈ H. Show that

p = Prox fx ⇔ x− p ∈ ∂f(p). (52)

Definition 4.7 Let H1, . . . ,Hm be real Hilbert spaces with inner products denoted �· | ·�H1
, . . . , �· | ·�Hm

.
We can construct another Hilbert space, called the direct sum (sometimes also called a product
space) as follows. Our vector space is denoted

�m
i=1Hi = H1 × · · · ×Hm, and the inner product on

the direct sum is given by

�· | ·��m
i=1 Hi

:

m�

i=1

Hi ×
m�

i=1

Hi → R : ((xi)
m
i=1, (yi)

m
i=1) �→

m�

i=1

�xi | yi�Hi
. (53)

13

If, for every i ∈ I, fi : Hi →]−∞,+∞], then the function

f :
m�

i=1

Hi →]−∞,+∞] : (xi)
m
i=1 �→

m�

i=1

fi(xi) (54)

is called a separable sum.

Proposition 4.8 (Proximity Operator of a Separable Sum) Let H1, . . . ,Hm be real Hilbert spaces,
and for every i ∈ {1, . . . ,m}, let fi ∈ Γ0(Hi). Let f be the separable sum of (fi)mi=1 in the form (54).
Then

�
∀(xi)mi=1 ∈

m�

i=1

Hi

�
Prox f ((xi)

m
i=1) = (Prox f1(x1), Prox f2(x2), . . . ,Prox fm(xm)). (55)

Proof. For notational convenience, set H =
�m

i=1Hi. Let x = (xi)
m
i=1 ∈ H. Then

min
z∈H

f(z) +
1

2
�x− z�2H = min

z1∈H1

...
zm∈Hm

m�

i=1

fi(zi) +
1

2
�xi − zi�2Hi

(56)

=

m�

i=1

min
zi∈Hi

fi(zi) +
1

2
�xi − zi�2Hi

. (57)

Since all of the summands in (56) are only concerned with a single optimization variable zi (as
opposed to the entire vector z ∈ H), we actually have a sum of independent optimization problems!
This observation permits us to commute the sum and the minimization between (56) and (57).
Finally, we see that the solution in each of the subproblems in (57) is precisely the proximity
operator of fi at xi. Since the solution in each component is Prox fi(xi), we have are done since we
have just shown (55).

Example 4.9 Let γ > 0. Let’s compute the proximity operator of my favorite nonsmooth function
γ| · |. Let x, p ∈ R. Combiniing Example 3.12 and the characterization in Exercise 4.6, we find

p = Prox γ|·|x ⇔ x− p ∈ ∂(γ| · |)(p) (58)

⇔ x− p ∈ ∂(| · |)(p) =

−γ if p < 0

[−γ, γ] if p = 0

γ if p > 0.

(59)

Now, (59) looks a bit funny, since we don’t know what p is to begin with. However, if we cobble
together the case analysis, we will be able to formally invert this inclusion. Let’s consider the first
case: If p < 0, then

x− p ∈ {−γ} ⇔ p = x+ γ, (60)

14

which means p < 0 if and only if x < −γ. Note we have translated a condition on p to a condition
on x. Similarly, for p > 0

x− p ∈ {γ} ⇔ p = x− γ, (61)

and p > 0 if and only if x > γ. Finally, if p = 0

x− p ∈ [−γ, γ] ⇔ x ∈ [−γ, γ]. (62)

Note that for each of the three cases, we were able to translate the condition on p in (59) to a
condition on x! Combining these three observations, we find that

p = Prox γ|·(x)

x+ γ if x < −γ

0 if − γ ≤ x ≤ γ

x− γ if γ ≤ x.

(63)

This operation in (63) is known as the soft thresholder.

Exercise 4.10 Compute the proximity operator of the one norm

� · �1 : Rn → R : (xi)
m
i=1 �→

m�

i=1

|xi| (64)

hint: Proposition 4.8

Remark 4.11 Collectively, humans know how to compute lot of proximity operators. Two libraries
I have used are below.

(i) proximity-operator.net

(ii) ProximalOperators.jl (on Github)

Definition 4.12 Let T : H → H be an operator and let x ∈ H. If Tx = x, x is a fixed point of T .

Proposition 4.13 Let f ∈ Γ0(H) and let x ∈ H. Then

Prox f (x) = x ⇔ x minimizes f. (65)

Proof. First, note that dom (12� ·−x�2) = H, so by the Sum Rule (Theorem 3.14(ii)), we know that

∂

�
f +

1

2
� ·−x�2

�
= ∂f + ∂

�
1

2
� ·−x�2

�
.

15

In a matter which proceeds similarly to Exercise 3.5, we observe from Remark 3.15 that, for ev-
ery z ∈ H, ∂

�
1
2� ·−x�2

�
(z) = {z − x}. Combining these facts, along with using Fermat’s rule

(Theorem 3.13) twice, we find

Prox f (x) = x ⇔ x minimizes f(·) + 1

2
� ·−x�2 (66)

⇔ 0 ∈ ∂

�
f(·) + 1

2
� ·−x�2

�
(x) (67)

⇔ 0 ∈ ∂f(x) + ∂

�
1

2
� ·−x�2

�
(68)

⇔ 0 ∈ ∂f(x) + {x− x} (69)

⇔ x minimizes f. (70)

Proposition 4.13 tells us that the fixed-points of a proximity operator are precisely the minimiz-
ers of our function. Spoiler alert: this motivates a fixed-point algorithm! It turns out that, if we just
repeatedly apply the proximity operator, we will converge to a solution of our problem. This will
be detailed in Theorem 4.15.

There are a lot of awesome properties of the proximity operator. However, in the interest of
time (and practicability), we now shift focus towards algorithms.

4.1 The Proximal Point Algorithm

In optimization, there are a variety of methods to quantify “convergence” of an algorithm. One
method – primal convergence shows that the function value of the objective (1) approaches the
optimal value, i.e., f(xn)− infx∈C f(x) → 0. However, this could be misleading.

Exercise 4.14 (extra credit) Construct a convex function f with at least one minimizer and a se-
quence (xn)n∈N such that f(xn)− infx∈H f(x) → 0, and for every minimizer z, �xn − z� �→ 0.

There are solutions to Exercise 4.14 (e.g., in Bauschke/Combettes’ book mentioned in the intro-
duction) which demonstrate that, no matter how low the objective value can be, our iterates could
still be arbitrarily far away from the actual minimizers. As a result, some like to instead show
that that, for a minimizer z ∈ C, the sequence of iterates actually approaches the minimizer, i.e.,
�xn − z� → 0. For the proximal point algorithm, we have both.

Theorem 4.15 (Proximal Point Algorithm (Martinet, 1970)) Let f ∈ Γ0(H) have at least one
minimizer. Let γn)n∈N be a sequence in]0,+∞[such that

�
n∈N γn = +∞, and let x0 ∈ H. Set

(∀n ∈ N) xn+1 = Prox γnf (xn). (71)

Then the following hold.

16

(i) f(xn)n∈N converges monotonically to min f(H).

(ii) (xn)n∈N converges to a minimizer of f .

Remark 4.16 (Comment on convergence proofs for prox-based algorithms) The proximal point
algorithm (and many of its relatives) can be proven to converge using the following template4.

(i) Show that the algorithm is Fejér monotone, i.e., for a solution to your problem z ∈ H, we
have

�xn+1 − z� ≤ �xn − z� (72)

Oftentimes, the properties of (Tn)n∈N actually reveal a strictly negative term being added to
�xn − z� on the upper bound in (72). This can sometimes be used to obtain specific rates of
convergence.

(ii) Assume that a cluster point of the algorithm exists. Show that it is a solution of our problem.

Using existing theory about Fejér monotonicity, we can conclude (xn)n∈N converges to a solution
of our problem. Note that we never actually had to prove the algorithm converges.

Remark 4.17 (A retrospective on Theorem 4.15) The Proximal Point Algorithm tells us that, as
long as we can compute the proximity operator of our objective function, we can declare victory.
That’s it, right? Well, it turns out that the story is not quite so simple. In practice, one can
typically compute the proximity operator of each summand in an optimization problem. However,
computing the prox of their sum is much trickier. Tune in next time, for an introduction to splitting
algorithms!

4unfortunately we do not have time to detail the full convergence proofs

17

