
5 Splitting Algorithms

Let’s start with a motivating example (from “Learning with optimal interpolation norms” by Com-
bettes, McDonald, Miccheli, & Pontil, in Numerical Algorithms, 2019).

Example 5.1 (linear SVM training) Given two datasets D1,D2 ⊂ H, let’s consider the problem of
training a sparse linear separator

minimize
x∈H


�

d∈D1

max{0, 1− �d | x�}


+


�

d∈D2

max{0, 1 + �d | x�}


+ λ�x�1. (73)

A solution, x∗, to (73) is used to classify unobserved data u by looking at the sign of a scalar
product: if �u | x∗� > 0, we predict u ∈ D1; for �u | x∗� < 0, we predict u ∈ D2. The first
two sums are composed of hinge loss functions based on our two datasets. The final term � · �1
is used to promote sparsity of x. Loosely speaking, x is “sparse” if it has a small number of
nonzero components. The larger value of λ, the more sparse x∗ becomes. Once a sparse solution
x∗ is found, this makes classification predictions very efficient (particularly in high-dimensional
settings), because we only have to look at the nonzero components of x∗ in order to compute
�u | x∗�.

If we look at the libraries in Remark 4.11, the objective function in Example 5.1 does not appear
anywhere! We can find the prox of an individual hinge loss and the prox of � · �1. However it looks
like we can’t compute the prox of the sum! This exemplifies a more general problem, an instance
of which is summarized below.

Question 5.2

Given f, g ∈ Γ0(H) and access to compute Prox f and Prox g, can we efficiently compute Prox f+g?

If a generic answer to Question 5.2 were available, we could just apply the Proximal Point Algorithm
(Theorem 4.15) to declare victory. For some settings, we have a positive answer to this question:

Example 5.3 Let U and V be orthogonal vector subspaces of H. Then (as demonstrated in class)

Prox ιU+ιV = Prox ιU∩V = Proj U∩V = Proj U ◦ Proj V = Prox ιU ◦ Prox ιV . (74)

Hence, for this setting, the prox of the sum is expressed as the composition of prox operators.

However, outside of special instances like Example 5.3, a satisfactory answer to Question 5.2
has not been found. Therefore, the research community has circumvented this issue by producing
algorithms which converge to minimizers of (f + g) without requiring an answer to Question 5.2.
Loosely speaking, this class of algorithms are known as splitting algorithms, and their hallmark
characteristic is that they only rely on operators associated with the individual summands of the
objective function. Below, we present the Forward-Backward algorithm, which minimizes a sum of

16

a smooth function g ∈ Γ0(H) and another (potentially nonsmooth) function f ∈ Γ0(H). Instead of
requiring Prox f+g, we only rely on Prox f and evaluating ∇g. The specific form below comes from
Proposition 28.13 in Bauschke/Combettes’ book.

Theorem 5.4 (Forward-Backward Algorithm) Let f ∈ Γ0(H), let L > 0, and let g ∈ Γ0(H) be
L-smooth. Let γ ∈]0, 2/L[and set δ = 2 − γL/2. Let (λn)n∈N be a sequence in [0, δ] such that�

n∈N λn(δ − λn) = +∞ and let x0 ∈ H. Suppose (f + g) has a minimizer. Iterate

for n = 0, 1, . . .�
yn = xn − γ∇g(xn) # Gradient (forward) step
xn+1 = xn + λn(Prox γfyn − xn). # Prox (backward) step

(75)

Then the following hold:

(i) (xn)n∈N converges to a minimizer of f + g.

(ii) (f(xn) + g(xn))− infx∈H f(x) + g(x) � 0.

The proof idea follows from the Fejer machinery discussed in Remark 4.16. We can provide an
intuition which demonstrates that fixed-points of the Forward-backward operators in (75) are min-
imizers of f + g. Since g is differentiable, we can use the sum rule. By Fermat’s rule, we have

x minimizes f + g ⇔ 0 ∈ ∂(f + g)(x) (76)

⇔ 0 ∈ ∂f(x) + ∂g(x) (77)

⇔ 0 ∈ ∂f(x) + {∇g(x)} (78)

⇔ −∇g(x) ∈ ∂f(x). (79)

Multiplying by γ and adding x, then using our characterization from Exercise 4.6 we find, for every
n ∈ N,

x minimizes f + g ⇔ x− γ∇g(x) ∈ x+ ∂γf(x). (80)

⇔ x = Prox γf (x− γ∇g(x)) (81)

⇔ λn

�
Prox γf

�
x− γ∇g(x)

�
− x

�
= 0 (82)

⇔ x+ λn

��
Prox γf (x− γ∇g(x)

�
− x

�
= x, (83)

i.e., x is a fixed-point of the algorithm (75).

Example 5.5 Let C be a closed convex subset of H, let f = ιC , and let λn ≡ 1/L. Then, it follows
from Example 4.5 that the popular projected gradient descent algorithm

(∀n ∈ N) xn+1 = Proj C(xn − γ∇g(xn)) (84)

is a special case of the Forward-Backward algorithm (Theorem 5.4).

17

Example 5.6 (LASSO (Tibshirani)) The Forward-backward algorithm can be applied to solve the
LASSO problem,

minimize
z∈H

�Ax− b�2 + �x�1. (85)

Now, suppose that we can only use proximity operators – for instance, either I must (because all
of my functions are nonsmooth, as in Example 5.1), or I have read some literature telling me that I
may get better convergence behavior5. Even for the LASSO problem, we could compute this prox:

Exercise 5.7 Let A : Rn → Rm be a matrix and let b ∈ Rm. Compute the proximity operator of

1

2
�A(·) + b�2.

hint: Proposition 3.6 and Exercises 4.6 and 3.5.6

One of the standard “prox-only” splitting algorithms for solving

minimize
x∈H

f(x) + g(x) (86)

is the following (whose form is simplified from Corollary 28.3 in the book).

Theorem 5.8 (Douglas-Rachford algorithm) Let f, g ∈ Γ0(H) such that a minimizer of (f + g)
exists, let (λn)n∈N be a sequence in [0, 2] such that

�
n∈N λn(2−λn) = +∞, and let γ > 0. Let x0 ∈ H

and set

for n = 0, 1, . . .
yn = Prox γgxn
zn = Prox γf (2yn − xn)
xn+1 = xn + λn(zn − yn).

(87)

Then (xn)n∈N converges to a minimizer of f + g.

Below is an indication as to why this algorithm works.

Exercise 5.9 (optional) Let R1 = 2Prox γf − Id and let R2 = 2Prox γg− Id. Show that the Douglas-
Rachford algorithm is of the form

xn+1 = xn +
λn

2
(R1(R2xn)− xn) . (88)

5e.g., Combettes & Glaudin, “Proximal activation of smooth functions in splitting algorithms for convex image recov-
ery”, SIAM J. Imaging Sci., 2019, or Briceño-Arias et al., “A random block-coordinate Douglas-Rachford splitting method
with low computational complexity for binary logistic regression”, Comput. Optim. Appl., 2019.

6(or, if you must, use this link for the solution: tiny.cc/b7d7vz)

18

From Exercise 5.9, we can show an indication as to why fixed points of the Douglas-Rachford
algorithm yield solutions of (86). Let x ∈ H and n ∈ N. Then, using Exercise 5.9, x is a fixed-point
of the Douglas Rachford algorithm if and only if

x = x+
λn

2
(R1(R2x)− x) ⇔ 0 =

λn

2
(R1(R2x)− x) (89)

⇔ x = R1(R2x) (90)

⇔ x = R1(2Prox γgx− x) (91)

⇔ x = 2Prox γf (2Prox γgx− x) + x− 2Prox γgx (92)

⇔ Prox γgx = Prox γf (2Prox γgx− x) (93)

⇔
�
y = Prox γgx

y = Prox γf (2y − x).
(94)

Therefore, in view of Exercise 4.6

x = x+
λn

2
(R1(R2x)− x) ⇔

�
x− y ∈ ∂γg(y)

(2y − x)− y =∈ ∂γf(y).
(95)

⇔





x− y

γ
∈ ∂g(y)

y − x

γ
∈ ∂f(y).

(96)

Adding implies that 0 ∈ ∂f(y)+∂g(y). One statement I did not mention is that ∂(f)+∂(g) ⊂ ∂(f+g)
basically always holds (while achieving equality for the reverse inclusion requires extra hypotheses,
as discussed in the Sum Rule Theorem 3.14). Hence, by Fermat’s rule (Theorem 3.13), y = Prox γgx
is a minimizer of f + g!

5.1 What about a sum of functions?

Okay great, thanks to the Douglas-Rachford algorithm (Theorem 5.8), we can minimize a sum
of two functions using their proximity operators. But this still does not give us a route to solve
Example 5.1. What about an arbitrary number of functions? For f1, . . . , fm ∈ Γ0(H), I want to
minimize

m�

i=1

fi(x). (97)

We will start with the following construction.

Exercise 5.10 Let H be a Hilbert space, and consider the m-fold direct sum H = ⊕m
i=1H. Let us

define the diagonal subspace:

D = {(xi)mi=1 ∈ H | (∀i, j ∈ {1, . . . ,m}) xi = xj } . (98)

19

Show that the projection onto D is obtained by averaging all of the components:

(∀(xi)mi=1 ∈ H) Proj D((xi)mi=1) =

�
1

m

m�

i=1

xi

�m

i=1

(99)

Example 5.11 (Product space technique) Let (fi)mi=1 be functions on Γ0(H), and suppose I want
to

minimize
x∈H

n�

i=1

fi(x). (100)

We are going to solve (100) by reformulating it on the product space H =
�m

i=1H. Set

f : H →]−∞,+∞] : (xi)
m
i=1 �→

m�

i=1

fi(xi) and (101)

g = ιD, where D is defined in (98). (102)

Then

minimize
x∈H

f(x) + g(x) = minimize
x1∈H

...
xm∈H

(∀i,j) xi=xj

m�

i=1

fi(xi) = minimize
x∈H

m�

i=1

fi(x). (103)

So, using this product space H, we were able to write our original problem (100) in the form (86)
which is tractable with the Douglas Rachford algorithm (Theorem 5.8). Now, we only need the
proximity operators of f and g. However, from Proposition 4.8 and Exercise 5.10 we know that

Prox f (xi)
m
i=1 = (Prox f1(x1), . . . ,Prox fm(xm)) (104)

Prox g(xi)
m
i=1 = Proj D((xi)mi=1) =

�
1

m

m�

i=1

xi

�m

i=1

, (105)

so we can use DR to minimize (100). This yields the following algorithm.

Algorithm 5.12 (Douglas-Rachford in a product space) Let (fi)
m
i=1 be functions in Γ0(H) such

that a minimizer of (97) exists, let (λn)n∈N be a sequence in [0, 2] such that
�

n∈N λn(2−λn) = +∞,
and let γ > 0. Let {xi,0}mi=1 ⊂ H and set

for n = 0, 1, . . .

yn = 1
m

�m
i=1 xi,n # Prox γg step

for i = 1, . . . ,m�
zi,n = Prox γfi(2yn − xi,n) # Prox γf step
xi,n+1 = xi,n + λn(zi,n − yn).

(106)

One drawback is that storage scales linearly with the number of summands in our objective. Un-
fortunately, I am not aware of many prox-based methods which can avoid this issue.

Exercise 5.13 If H has dimension d, show that the storage required by the product-space Douglas-
Rachford algorithm (106) scales like O(md).

20

5.2 Practitioners’ notes and algorithmic advances

Remark 5.14 (Computing a prox) If you find yourself needing to compute the prox of a function,
you can oftentimes avoid computing it directly. The easier route is to use existing theory to cobble
together the prox of your specific function. The prox operators of many “base” nonlinear functions
f ∈ Γ0(H) appearing in optimization are available in the libraries discussed in Remark 4.11. From
there, you can use some of the following rules to compute the prox of your “fancier” function g in
terms the prox of your “base” function f . These results (and many, many more) appear in Chapter
24 of the class book. Let z, u ∈ H.

(i) Let g = f(·− z). Then Prox γg(x) = z + Prox γf (x− z).

(ii) Let g = f + α
2 � ·−z�2 + �· | u�. Then Prox γgx = Prox γ(γα+1)−1f ((γα+ 1)−1(x+ γ(αz − u))).

(iii) Let g(x) = f(−x). Then Prox g(x) = −Prox f (−x).

(iv) Let H = Rn×m be the real Hilbert space of n×m matrices under the Frobenius norm. Let r =
min{m,n} and, for x ∈ H, we denote its reduced SVD with x = U diag (σ1(x), . . . ,σr(x))V

�.
Let f ∈ Γ0(R) be an even function7. If, for every x ∈ H, g(x) =

�r
i=1 f(σi(x))

r
i=1, then

Prox γg = U diag (Prox fσ1(x), . . . ,σk(x), 0, . . . , 0)V
�, (107)

where k = rank(x).8

(v) Let g = f ◦ L where L is an invertible linear operator such that L−1 = L∗ (e.g., Fourier
transform, DCT, or an orthogonal wavelet transform). Then Prox γgx = L∗(Prox γf (Lx)).

The book has extensive results on how to handle more arcane linear operators than in (v). In the
worst case, one may need to “split” a function f from its linear operator L : H → G, using the graph
of the linear operator via the following technique. By setting G =

�
(x, y) ∈ H× G

�� Lx = y
�

, we
can reformulate a problem on H with a generic linear operator as a problem on the product space
H�G as follows

inf
x∈H

f(Lx) = inf
(x,y)∈H�G

Lx=y

f(y) = inf
(x,y)∈H�G

f(y) + ιG(x, y). (108)

With the reformulation (108) (where, in the final infimum, f is technically viewed as a function
which maps (x, y) to f(y)), one can use any basic splitting algorithm. Formulae for computing
Prox ιG = Proj G are presented in Example 29.19 in the book (note they all require inverting a
linear operator).

7An even function satisfies f(−x) = f(x)
8This result is used to derive the prox of the nuclear norm � · �nuc =

�r
i=1 |σi(·)| which is used in low-rank recovery

problems in data science and image processing.

21

5.3 A few keywords to look up

In the last several decades, there have been a lot of algorithmic “bells and whistles” folks have
added to prox-based algorithms for solving problems of the form (97) (and more generic models
as well). I will hand-wavily discuss a few of them with terminology one could use to search around
in the literature.

(i) Parallelism: For most prox-based algorithms, the lion’s share of computational time is usually
devoted to computing the prox operators (since the other operations are often simple linear
algebra operations). Structures like the product-space DR algorithm in (106) allow the prox
operators in the inner loop to be activated in parallel.

(ii) Block-activation While parallelized algorithms are helpful, processing every Prox fi for i ∈
{1, . . . ,m} may be intractable or prohibitively slow. For some data science applications (e.g.,
in Example 5.1), this corresponds to processing a full epoch over a dataset in every iteration.
This issue has given rise to the advent of block-iterative (or block-activated) algorithms
where, instead of activating every operator (Prox fi)

m
i=1 at every iteration n ∈ N, we only

activate a subset In ⊂ {1, . . . ,m} of them. By re-using old iterates for the “non-activated”
terms in {1, . . . ,m} \ In, we save a lot of computational effort. There are both deterministic
and stochastic variants of these algorithms. For deterministic algorithms, one can select In
such that we expect the computations for (Prox fi)i∈In to finish at roughly the same time.

(iii) Asynchrony In most block-activated methods, we must wait until all of the calculations of
(Prox fi)i∈In are completed before one can perform a synchronization step to complete one
iteration. However, asynchronous algorithms circumvent this waiting issue.

(iv) Extrapolation Many iterative schemes use updates of the form

xn+1 = xn + λndn,

where dn is the “direction” we travel from the current iterate, and λn can be viewed as a
step-size. For most of our algorithms, λn has a fixed upper bound. However (particularly in
early parts of an optimization algorithm), large steps can yield favorable convergence. So,
there are algorithms out there which allow one to use larger values of λn which are computed
on-the-fly during your iteration (rather than pre-scheduled stepsizes, as in the vanilla DR/FB
algorithms).

(v) Acceleration is a method for improving the convergence rate of an algorithm.

These terms are often turned into adjectives in the literature, for instance many Projective
Splitting algorithms9 are parallel, block-activated, and asynchronous.

9e.g., “Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions” by Combettes &
Eckstein, in Math. Program., 2018, or “Projective splitting with forward steps” by Jonstone and Eckstein in Math.
Program., 2022.

22

