
A “crash course” in nonsmooth convex optimization

Zev Woodstock
woodstock(at)zib.de*

1 Introduction

These notes are supplementary material to a “crash course” I am teaching in May of 2023. The
topic is proximity operators and nonsmooth convex optimization. These notes are not meant to be
used as a standalone resource. Please cite peer-reviewed material. The reference book for this class
is Convex Analysis and Monotone Operator Theory, 2nd edition, by Heinz H. Bauschke and Patrick
L. Combettes, published by Springer.

If unspecified, H is a real finite-dimensional vector space in Section 1 and a real finite-
dimensional Hilbert space from Sections 2 onward (e.g., Rn with the Euclidean inner product
is fine). While this class sticks to finite dimensions, virtually all of these results also apply to real
(infinite-dimensional) Hilbert spaces, modulo minor adjustments detailed in the class book.

1.1 Optimization terminology and the extended real line

Notation 1.1 We will work with the extended real line, i.e., [−∞,+∞] := R ∪ {−∞,+∞}. Al-
gebra on this field follows most “natural” rules one could expect (e.g., for x ∈ R, x +∞ = ∞).
However, the following quantities are undefined:

• Any subtraction of infinities: “+∞− (+∞)”

• Zero times infinity: “0 · (±∞)”

• Any quotient of infinities: “±∞/±∞, ±∞/∓∞, . . . ”

As a result, if we work with extended-real-valued functions, we must be sure to avoid anything
which is undefined (e.g., the objective function f(x) + g(x) could be undefined if there exists z
such that g(z) = −∞ and f(z) =∞.)

*Please report typos/errors found in these notes. Homework solutions should be handed in to my office ZIB 3107.

1

Definition 1.2 Given a real vector space H, a function f : H → [−∞,+∞], and a set C ⊂ H,
consider the following optimization problem.

minimize
x∈C

f(x) (1)

We call f the objective function. We call C a constraint. For any x ∈ C, we say x is feasible.
Otherwise, for x ∈ Rn \ C, x is infeasible. If a point x∗ ∈ C satisfies

(∀x ∈ C) f(x∗) ≤ f(x), (2)

we call x∗ a solution to the optimization problem (1).

For this class, we consider minimization; to maximize f , just use the objective function −f .

Definition 1.3 For I ⊂ [−∞,+∞], a ∈ [−∞,+∞] is a lower bound (upper bound) if, for every
ξ ∈ I, a ≤ ξ (a ≥ ξ). The greatest lower bound, or infimum, of the set I is denoted inf I.
Analogously, the least upper bound, or supremum, of the set I is denoted sup I. In general,
inf I, sup I ∈ [−∞,+∞]. If, additionally, inf I ∈ I (sup I ∈ I), we call it the minimum (maximum),
and denote it min I (max I). In these cases, we say the infimum (supremum) is attained.

A few things to mention:

(i) For I 6= ∅, we have inf I ≤ sup I. For the empty set, inf ∅ = +∞ and sup∅ = −∞.

(ii) While the inf and sup are always defined, max and min may not exist (e.g., consider I = (0, 1)
has inf I = 0 and sup I = 1. However, since 0, 1 6∈ I, neither max I nor min I exist.)

(iii) Let f : Rn → [−∞,+∞]. We adopt the notation that infx∈C f(x) = inf{f(x) |x ∈ C}.

(iv) It is common in optimization literature to abuse notation, and use

min
x∈C

f(x) (3)

to describe the optimization problem (1). Technically, minx∈C f(x) is not an optimization
problem – it is the optimal value of the objective function at a solution, which may or may
not exist.

The following theorem is often used as a tool to ensure that a solution to an optimization
problem exists. Regretfully, this class does not have enough time to detail the topics of com-
pact/closed/lsc. However, since the following theorem is referenced a few times in the class, I will
provide its statement here.1

Theorem 1.4 (Weierstraß) Let f : H → [−∞,+∞] be lower semicontinuous and let C be a compact
subset of H. Suppose that C ∩ dom f 6= ∅. Then f achieves its infimum over C.

1Write me if you are interested in learning more about existence of solutions to optimization problems! For un-
bounded problems, analytic notions of “coercivity” and “recession cones” can also yield existence results.

2

Definition 1.5 Let f : H → [−∞,+∞]. We will use the following terms.

(i) The domain of f is

dom f =
{
x ∈ H

∣∣ f(x) < +∞
}

(4)

(ii) The epigraph of f is

epi f =
{

(x, ξ) ∈ H × R
∣∣ f(x) ≤ ξ

}
(5)

(iii) The function f is proper if dom f 6= ∅ and it never outputs the value −∞ (i.e., −∞ 6∈ f(H)).

(iv) The function f is lower semicontinuous (sometimes abbreviated “lsc”) at x ∈ H if, for every
sequence (xn)n∈N satisfying xn → x, we have f(x) ≤ lim inf f(xn)

For this class, we will predominantly consider proper and lsc functions. A few things to note
about the lsc assumption: (1) every continuous function is lsc, and (2) lower semicontinuity basi-
cally allows for a jump-discontinuity to occur at x ∈ H, but requires that f takes the lowest possible
limiting value at x (cf. the figures drawn in class, or here2).

1.2 Inner product and norms

Definition 1.6 LetH be a real finite-dimensional vector space. A scalar product (sometimes called
inner product) is a function 〈· | ·〉 : H×H → R which satisfies the following properties.

(i) (∀x ∈ H \ {0}) 〈x | x〉 > 0

(ii) (∀x, y ∈ H) 〈x | y〉 = 〈y | x〉

(iii) (∀x, y, z ∈ H)(∀α ∈ R) 〈αx+ y | z〉 = α〈x | z〉+ 〈y | z〉

Exercise 1.7 Let 0 ∈ H be the zero element of H. Show that, for every x ∈ H, 〈0 | x〉 = 0.

Exercise 1.8 ConsiderH = Rn. For two vectors x, y ∈ Rn, the dot product is given by 〈x | y〉 = x>y.
Show that the dot product on Rn is a scalar product.

Exercise 1.9 Consider the vector space of matrices Rn×n. For two matrices A = (ai,j)1≤i,j≤n and
B = (bi,j)1≤i,j≤n, the Frobenius inner product is given by

〈A | B〉 =
n∑
i=1

n∑
j=1

ai,jbi,j (6)

Show (6) is an inner product.

2https://en.wikipedia.org/wiki/Semi-continuity#/media/File:Lower_semi.svg

3

https://en.wikipedia.org/wiki/Semi-continuity#/media/File:Lower_semi.svg
https://en.wikipedia.org/wiki/Semi-continuity#/media/File:Lower_semi.svg

Proposition 1.10 (Cauchy-Schwarz) For every x, y ∈ H,

〈x | y〉2 ≤ 〈x | x〉〈y | y〉. (7)

Proof. If y = 0, (7) holds. Now suppose that y 6= 0. By Definition 1.6, 〈y | y〉 > 0. Set α =
〈x | y〉/〈y | y〉. First, we find

0 ≤ 〈x− αy | x− αy〉 (8)

= 〈x | x〉 − 2α〈x | y〉+ α2〈y | y〉 (9)

= 〈x | x〉 − 2α〈x | y〉+ α〈x | y〉 (10)

= 〈x | x〉 − α〈x | y〉. (11)

Rearranging the inequality, we find that

〈x | y〉2

〈y | y〉
= α〈x | y〉 ≤ 〈x | x〉 (12)

⇔ 〈x | y〉2 ≤ 〈y | y〉〈x | x〉. (13)

Definition 1.11 Let H be a real finite-dimensional vector space. A function ‖ · ‖ : H → R is a norm
if the following hold.

(i) (∀x ∈ H) ‖x‖ = 0⇒ x = 0

(ii) (∀x, y ∈ H) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

(iii) (∀x ∈ H)(∀α ∈ H) ‖αx‖ = |α|‖x‖

A norm is a way to measure magnitude of vectors, or the distance from one vector to another
‖x− y‖.

Exercise 1.12 Let H be a real finite-dimensional vector space, and let 〈· | ·〉 be a scalar product on
H. Show that the norm defined by

‖ · ‖ : H → R : x 7→
√
〈x | x〉 (14)

satisfies the properties in Definition 1.11.

The Euclidean norm on Rn, given by (ξ1, . . . , ξn) 7→
√
ξ21 + · · ·+ ξ2n, arises from the dot product.

Exercise 1.12 yields the following formulation of the Cauchy-Schwarz inequality

(∀x, y ∈ H) 〈x | y〉 ≤ ‖x‖‖y‖. (C-S)

While the actual definition can get quite technical, for our class, when we say “Hilbert space”, we
are referring to the finite-dimensional vector space H, equipped with a scalar product 〈· | ·〉 and
a norm who arises from the scalar product via ‖ · ‖ =

√
〈· | ·〉. Some examples are Rn under the

Euclidean inner product, or the space of real n×m matrices under the Frobenius inner product.

4

Exercise 1.13 Let (x1, x2, x3) ∈ R3. Show that

2x1 − x42 + 6x3 ≤ 4
√
x21 + x82 + 9x23. (15)

Can the coefficient 4 in (15) be reduced?

2 Convexity

Definition 2.1 A set C ⊂ H is convex if, for every x, y ∈ C

(∀α ∈]0, 1[) αx+ (1− α)y ∈ C. (16)

A function f is convex if epi f is convex.

Proposition 2.2 f : H → [−∞,+∞] is convex if and only if

(∀x, y ∈ dom f) (∀α ∈]0, 1[) f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (17)

Proof. First, we note that if f is identically +∞, then dom f = ∅ if and only if epi f = ∅, so (17) is
vacuously true. Now assume that dom f 6= ∅. Let (x, ξ) and (y, η) be in epi f and let α ∈]0, 1[.
(⇒) Assume that epi f is convex. Then

α(x, ξ) + (1− α)(y, η) = (αx+ (1− α)y, αξ + (1− α)η) ∈ epi f. (18)

Therefore, f(αx+ (1−α)y) ≤ αξ+ (1−αη. Taking the limit as ξ ↘ f(x) and η ↘ f(y) yields (17).
(⇐) Assume that (17) holds. By definition, f(x) ≤ ξ and f(y) ≤ η. So, by (17),

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (19)

≤ αξ + (1− α)η. (20)

Therefore, (αx+ (1− α)y, αξ + (1− α)η) ∈ epi f which completes the proof.

Definition 2.3 Let ρ > 0 and let x ∈ H. A closed ball of radius ρ isB(x; ρ) =
{
z ∈ H

∣∣ ‖x− z‖ ≤ ρ}.

Definition 2.4 Let f : H → [−∞,+∞] and let x ∈ H. x is a local minimizer of f if there exists
ρ > 0 such that

(∀z ∈ H ∩B(x; ρ)) f(x) ≤ f(z). (21)

x is a global minimizer of f if

(∀z ∈ H) f(x) ≤ f(z). (22)

5

Fact 2.5 Let f be a convex and proper function. Then every local minimizer is a global minimizer.

Proof. This is left as an exercise (easier to prove after we learn about convex subdifferentials).

Definition 2.6 Let C ⊂ H be nonempty.

(i) The indicator function of C is

ιC : H → [−∞,+∞] : x 7→

{
0 if x ∈ C
+∞ if x 6∈ C.

(23)

(ii) Suppose that C is also closed. A projection of x ∈ H onto C is a solution to the minimization
problem

minimize
z∈C

‖x− z‖. (24)

A solution to (24) is a “closest” point to x which resides in C.

Fact 2.7 Let C ⊂ H and let x ∈ H.

(i) Without loss of generality, constrained optimization can be rephrased as unconstrained opti-
mization via changing the objective function:

inf
x∈C

f(x) = inf
x∈H

f(x) + ιC(x). (25)

The objective function f + ιC on the righthand side, although a bit fancier, allows us to
rephrase the constraint on the lefthand side.

(ii) C is convex if and only if its indicator function ιC is convex.

(iii) C is closed if and only if its indicator function ιC is lsc.

(iv) Suppose that C is closed. Then a solution to (24) exists.

(v) Suppose that C is convex. If a solution to (24) exists, it is guaranteed to be unique.

The proofs of (ii) and (iii) follow from the fact that epiC = C × [0,+∞[. Loosely speaking, the
proof of (iv) follows from the Weierstraß theorem (compactness is achieved by intersecting C with{
y ∈ H

∣∣ ‖x− y‖ ≤ η} for η > 0) and (v) follows from the fact that the norm is strictly convex – (a
notion we have not yet defined, but we will see later in Definition 4.1).

Definition 2.8 Let C ⊂ H be nonempty, closed, and convex. In view of Fact 2.7(iv)–(v), for every
x ∈ H there is a unique point, Proj C(x) ∈ H, which solves (24). This implicitly defines the
projection operator of C.

Proj C : H → H : x 7→ Proj C(x) (solution to (24)) (26)

6

Note: if x ∈ C, then Proj Cx = x.

For all of the algorithms in this course, we will focus on functions from the following class

Γ0(H) =
{
f : H →]−∞,+∞]

∣∣ f is proper, lower semicontinuous, and convex
}
. (27)

The following functions live in Γ0(H):

(i) Exponentials: ex

(ii) Log-barriers f(x) =

{
− ln(x) if x > 0

+∞ otherwise.

(iii) Any norm: ‖ · ‖ (e.g., ‖ · ‖1 which promotes sparsity, ‖ · ‖nuclear which promotes low-rank)

(iv) Hinge-Loss, ReLU, KL-Divergence, . . .

(v) Given a collection of functions (fi)
m
i=1 in Γ0(H), we can remain in Γ0(H) via the following

operations.

(a) max{f1, . . . , fm}
(b) Positive linear combinations: λ1f1 + · · ·+ λmfm, where {λi}mi=1 are positive.

(c) LetH1 andH2 be two finite-dimensional real vector spaces. Let b ∈ H2 and let A : H1 →
H2 be a linear operator (e.g., a matrix from Rn to Rm). If f1 ∈ Γ0(H2), and there exists
at least one z ∈ H1 such that Az + b ∈ dom f1, then g(·) = f1(A ·+b) ∈ Γ0(H1).

Exercise 2.9 The Minkowski sum of two subsets A,B of H is given by

A+B =
{
a+ b

∣∣ a ∈ A and b ∈ B
}
. (28)

Assume that A and B are convex. Prove that A+B is convex.

Exercise 2.10 Show that the norm ‖ · ‖ is convex using Definition 1.11.

3 What is Differentiability?

There are a lot of ML engineers who brush off the mathematical details of what it means for a func-
tion to be differentiable. Algorithmic differentiation (sometimes misleadingly-called “automatic”
differentiation) is only guaranteed to work when certain theoretical conditions about the existence
of a gradient hold. This part of the class is dedicated to explaining that differentiability is not a
freebie.

To start our discussion on differentiability, we will begin with a few preliminaries from analysis.

Definition 3.1 Let A : H1 → H2. Then A is linear if, for every α ∈ R and every x, y ∈ H1,

A(λx) = λA(x) and A(x+ y) = A(x) +A(y). (29)

7

Theorem 3.2 (Riesz-Fréchet representation) Let A : H → R be linear. Then there exists a unique
vector u ∈ H such that, for every x ∈ H, A(x) = 〈u | x〉.

Although at first-glance it looks unrelated, Theorem 3.2 is a central notion for defining the gradi-
ent. A necessary (albeit insufficient) condition for the existence of a gradient is the existence of a
directional derivative, defined below.

Definition 3.3 Let f : H →]−∞,+∞] be proper. The directional derivative of f at x ∈ dom f in
the direction y ∈ H is

f ′(x; y) = lim
α↘0

f(x+ αy)− f(x)

α
. (30)

From Definition 3.3, we point out a few things.

(i) The limit in (30) might not exist.

(ii) If f is convex, then f ′(x; y) ∈ [−∞,+∞].

(iii) Even if a directional derivative exists, it might not exist in R (since it could be +∞ or −∞).

Definition 3.4 Let x ∈ dom f . If f ′(x; ·) is linear, we say f is differentiable at x. In this case, the
unique vector provided by Theorem 3.2 is called the gradient of f at x and denoted ∇f(x).

f ′(x; ·) = lim
α↘0

f(x+ α ·)− f(x)

α
= 〈∇f(x) | ·〉 (31)

If f is differentiable at every x ∈ dom f , we say that f is differentiable.

Exercise 3.5 Verify that ∇(12‖ · ‖
2)(x) = x.

All of the properties we know and love about differentiability (chain rule, product rule, etc.) have
to be proven. Here is an example below.

Proposition 3.6 Let A : H1 → H2 be a linear operator (with adjoint denoted A∗), let b ∈ H2, and let
f : H → R be proper and differentiable. Set g = f(Ax+ b). Then g is differentiable and

∇g = A∗(∇f(A ·+b)). (32)

Proof. Since dom f = H2, dom g 6= ∅ so we let x ∈ dom g. By definition,

g′(x; y) = lim
α↘0

g(x+ αy)− g(x)

α
(33)

= lim
α↘0

f(A(x+ αy) + b)− f(Ax+ b)

α
(34)

= lim
α↘0

f(Ax+ b+ αAy)− f(Ax+ b)

α
(35)

= f ′(Ax+ b;Ay). (36)

8

So the directional derivative of g exists. Now, since f is differentiable,

g′(x; y) = f ′(Ax+ b;Ay) = 〈∇f(Ax+ b) | Ay〉 = 〈A∗(∇f(Ax+ b)) | y〉. (37)

Hence the directional derivative of g is linear and g is differentiable. The specific form of the
gradient is constructed in (37)

Algorithmic differentiation tools use results like Proposition 3.6 to approximate a gradient of
a function by reading its machine code. However, these subroutines do not check the theoretical
conditions required for their theorems (e.g., f must be differentiable) – this must be done (and is
oftentimes unjustly ignored) by the user.

Definition 3.7 Let f be proper and differentiable. f is smooth (“L-smooth”) if there exists L > 0
such that

(∀x, y ∈ H) ‖∇f(x)−∇f(y) ≤ L‖x− y‖. (38)

Exercise 3.8 Construct a function which is differentiable and nonsmooth.

Proposition 3.9 Let f : H →]−∞,+∞] be proper and convex. Then,

(∀x ∈ dom f)(∀y ∈ H) f ′(x; y − x) + f(x) ≤ f(y). (39)

Proof. By Proposition 2.2, for every α ∈]0, 1[,

f(x+ α(y − x))− f(x) = f ((1− α)x+ αy)− f(x) (40)

≤ (1− α)f(x) + αf(y)− f(x) (41)

= α(f(y)− f(x)). (42)

Therefore,

f(x+ α(y − x))− f(x)

α
≤ f(y)− f(x). (43)

Taking the limit as α↘ 0 implies f ′(x; y) ≤ f(y)− f(x), which in turn yields (39).

Corollary 3.10 Let f : H →]−∞,+∞] be proper and convex. If f is differentiable at an interior
point x of its domain, then

(∀y ∈ H) 〈y − x | ∇f(x)〉+ f(x) ≤ f(y). (44)

When the lefthand side of (44) is viewed as a function of y, we see it is the first-order Taylor
series approximation of f . Therefore, it follows from (39) that a convex differentiable function
always remains above its first-order Taylor approximation! This is the motivating idea in defining
a (convex) subgradient3

3There are more general notions of subgradients (e.g., Clarke or Mordukhovich subdifferentials). For functions on
Γ0(H), these notions are usually all equivalent.

9

Definition 3.11 Let f : H →]−∞,+∞]. A vector g is a subgradient of f at x ∈ H if

(∀y ∈ H) 〈y − x | g〉+ f(x) ≤ f(y). (45)

The subdifferential of f at x is the set of all subgradients, denoted ∂f(x).

Example 3.12 As shown in class,

∂(| · |)(x) =

−1 if x < 0

[−1, 1] if x = 0

1 if x > 0.

(46)

This leads to the following fundamental theorem for optimization.

Theorem 3.13 (Fermat’s Rule) Let f : H →]−∞,+∞] be proper. Then x is a minimizer of f if and
only if 0 ∈ ∂f(x).

Proof. By definition,

0 ∈ ∂f(x)⇔ (∀y ∈ H) 〈0 | y − x〉+ f(x) ≤ f(y) (47)

⇔ (∀y ∈ H) f(x) ≤ f(y). (48)

Unlike differentiable functions, there are technical conditions we must check in order to get
the “standard” rules one would hope for. The following theorem demonstrates some conditions
required to simplify computing the subdifferential of a sum of functions.

Theorem 3.14 (Sum rule) Let f, g ∈ Γ0(H) and suppose that one of the following holds:

(i) The interior of dom g intersects with dom f

(ii) dom g = H

(iii) The relative interiors of dom f and dom g intersect.

Then ∂(f + g) = ∂f + ∂g.

Remark 3.15 If f is convex and differentiable at x ∈ H, then ∂f(x) = {∇f(x)}.

10

4 Proximity Operators

We will refer to H as a “finite dimensional real Hilbert space.” When we say “Hilbert space,” we
are referring to both a vector space and an inner product (H, 〈· | ·〉), which also gives rise to a norm
via ‖ · ‖ =

√
〈· | ·〉 (see Exercise 1.12).

Definition 4.1 Let f : H →]−∞,+∞]. Then f is strictly convex if, for distinct points x, y ∈ H
(x 6= y), we have

(∀α ∈]0, 1[) f(αx+ (1− α)y) < αf(x) + (1− α)f(y). (49)

Exercise 4.2 Let f : H →]−∞,+∞] be strictly convex and suppose that at least one minimizer
exists. Prove that the minimizer is unique.

Proposition 4.3 Let f ∈ Γ0(H) and let x ∈ H. The following optimization problem has a unique
solution

minimize
z∈H

f(z) +
1

2
‖x− z‖2 (∗)

The proof idea of Proposition 4.3 comes from the fact that the norm is strictly convex, which implies
that the objective function in (∗) is convex.

Definition 4.4 Let f ∈ Γ0(H) and let x ∈ H. The solution to (∗) is the proximal point of f at x,
denoted Prox f (x) ∈ H. This defines an operator Prox f : H → H where x maps to Prox f (x).

Example 4.5 Let C be a nonempty closed convex subset of H. Then, for x ∈ H, we have

min
z∈H

ιC(z) +
1

2
‖x− z‖2 = min

z∈C

1

2
‖x− z‖2. (50)

However, the minimizer of (50) will be the same as in (24). Therefore, the proximity operator of
ιC is actually just the projection operator!

Prox ιC = Proj C . (51)

Exercise 4.6 Let f ∈ Γ0(H) and let x, p ∈ H. Show that

p = Prox fx ⇔ x− p ∈ ∂f(p). (52)

Definition 4.7 LetH1, . . . ,Hm be real Hilbert spaces with inner products denoted 〈· | ·〉H1
, . . . , 〈· | ·〉Hm

.
We can construct another Hilbert space, called the direct sum (sometimes also called a product
space) as follows. Our vector space is denoted

⊕m
i=1Hi = H1× · · · ×Hm, and the inner product on

the direct sum is given by

〈· | ·〉⊕m
i=1Hi

:

m⊕
i=1

Hi ×
m⊕
i=1

Hi → R : ((xi)
m
i=1, (yi)

m
i=1) 7→

m∑
i=1

〈xi | yi〉Hi
. (53)

11

If, for every i ∈ I, fi : Hi →]−∞,+∞], then the function

f :
m⊕
i=1

Hi →]−∞,+∞] : (xi)
m
i=1 7→

m∑
i=1

fi(xi) (54)

is called a separable sum.

Proposition 4.8 (Proximity Operator of a Separable Sum) LetH1, . . . ,Hm be real Hilbert spaces,
and for every i ∈ {1, . . . ,m}, let fi ∈ Γ0(Hi). Let f be the separable sum of (fi)

m
i=1 in the form (54).

Then (
∀(xi)mi=1 ∈

m⊕
i=1

Hi

)
Prox f ((xi)

m
i=1) = (Prox f1(x1),Prox f2(x2), . . . ,Prox fm(xm)). (55)

Proof. For notational convenience, set H =
⊕m

i=1Hi. Let x = (xi)
m
i=1 ∈ H. Then

min
z∈H

f(z) +
1

2
‖x− z‖2H = min

z1∈H1

...
zm∈Hm

m∑
i=1

fi(zi) +
1

2
‖xi − zi‖2Hi

(56)

=
m∑
i=1

min
zi∈Hi

fi(zi) +
1

2
‖xi − zi‖2Hi

. (57)

Since all of the summands in (56) are only concerned with a single optimization variable zi (as
opposed to the entire vector z ∈ H), we actually have a sum of independent optimization problems!
This observation permits us to commute the sum and the minimization between (56) and (57).
Finally, we see that the solution in each of the subproblems in (57) is precisely the proximity
operator of fi at xi. Since the solution in each component is Prox fi(xi), we have are done since we
have just shown (55).

Example 4.9 Let γ > 0. Let’s compute the proximity operator of my favorite nonsmooth function
γ| · |. Let x, p ∈ R. Combiniing Example 3.12 and the characterization in Exercise 4.6, we find

p = Prox γ|·|x⇔ x− p ∈ ∂(γ| · |)(p) (58)

⇔ x− p ∈ ∂(| · |)(p) =

−γ if p < 0

[−γ, γ] if p = 0

γ if p > 0.

(59)

Now, (59) looks a bit funny, since we don’t know what p is to begin with. However, if we cobble
together the case analysis, we will be able to formally invert this inclusion. Let’s consider the first
case: If p < 0, then

x− p ∈ {−γ} ⇔ p = x+ γ, (60)

12

which means p < 0 if and only if x < −γ. Note we have translated a condition on p to a condition
on x. Similarly, for p > 0

x− p ∈ {γ} ⇔ p = x− γ, (61)

and p > 0 if and only if x > γ. Finally, if p = 0

x− p ∈ [−γ, γ] ⇔ x ∈ [−γ, γ]. (62)

Note that for each of the three cases, we were able to translate the condition on p in (59) to a
condition on x! Combining these three observations, we find that

p = Prox γ|·(x)

x+ γ if x < −γ
0 if − γ ≤ x ≤ γ
x− γ if γ ≤ x.

(63)

This operation in (63) is known as the soft thresholder.

Exercise 4.10 Compute the proximity operator of the one norm

‖ · ‖1 : Rn → R : (xi)
m
i=1 7→

m∑
i=1

|xi| (64)

hint: Proposition 4.8

Remark 4.11 Collectively, humans know how to compute lot of proximity operators. Two libraries
I have used are below.

(i) proximity-operator.net

(ii) ProximalOperators.jl (on Github)

Definition 4.12 Let T : H → H be an operator and let x ∈ H. If Tx = x, x is a fixed point of T .

Proposition 4.13 Let f ∈ Γ0(H) and let x ∈ H. Then

Prox f (x) = x ⇔ x minimizes f. (65)

Proof. First, note that dom (12‖ · −x‖
2) = H, so by the Sum Rule (Theorem 3.14(ii)), we know that

∂

(
f +

1

2
‖ · −x‖2

)
= ∂f + ∂

(
1

2
‖ · −x‖2

)
.

In a matter which proceeds similarly to Exercise 3.5, we observe from Remark 3.15 that, for ev-
ery z ∈ H, ∂

(
1
2‖ · −x‖

2
)

(z) = {z − x}. Combining these facts, along with using Fermat’s rule

13

http://proximity-operator.net/
https://juliafirstorder.github.io/ProximalOperators.jl/latest/

(Theorem 3.13) twice, we find

Prox f (x) = x⇔ x minimizes f(·) +
1

2
‖ · −x‖2 (66)

⇔ 0 ∈ ∂
(
f(·) +

1

2
‖ · −x‖2

)
(x) (67)

⇔ 0 ∈ ∂f(x) + ∂

(
1

2
‖ · −x‖2

)
(68)

⇔ 0 ∈ ∂f(x) + {x− x} (69)

⇔ x minimizes f. (70)

Proposition 4.13 tells us that the fixed-points of a proximity operator are precisely the minimiz-
ers of our function. Spoiler alert: this motivates a fixed-point algorithm! It turns out that, if we just
repeatedly apply the proximity operator, we will converge to a solution of our problem. This will
be detailed in Theorem 4.15.

There are a lot of awesome properties of the proximity operator. However, in the interest of
time (and practicability), we now shift focus towards algorithms.

4.1 The Proximal Point Algorithm

In optimization, there are a variety of methods to quantify “convergence” of an algorithm. One
method – primal convergence shows that the function value of the objective (1) approaches the
optimal value, i.e., f(xn)− infx∈C f(x)→ 0. However, this could be misleading.

Exercise 4.14 (extra credit) Construct a convex function f with at least one minimizer and a se-
quence (xn)n∈N such that f(xn)− infx∈H f(x)→ 0, and for every minimizer z, ‖xn − z‖ 6→ 0.

There are solutions to Exercise 4.14 (e.g., in Bauschke/Combettes’ book mentioned in the intro-
duction) which demonstrate that, no matter how low the objective value can be, our iterates could
still be arbitrarily far away from the actual minimizers. As a result, some like to instead show
that that, for a minimizer z ∈ C, the sequence of iterates actually approaches the minimizer, i.e.,
‖xn − z‖ → 0. For the proximal point algorithm, we have both.

Theorem 4.15 (Proximal Point Algorithm (Martinet, 1970)) Let f ∈ Γ0(H) have at least one
minimizer. Let γn)n∈N be a sequence in]0,+∞[such that

∑
n∈N γn = +∞, and let x0 ∈ H. Set

(∀n ∈ N) xn+1 = Prox γnf (xn). (71)

Then the following hold.

(i) f(xn)n∈N converges monotonically to min f(H).

14

(ii) (xn)n∈N converges to a minimizer of f .

Remark 4.16 (Comment on convergence proofs for prox-based algorithms) The proximal point
algorithm (and many of its relatives) can be proven to converge using the following template4.

(i) Show that the algorithm is Fejér monotone, i.e., for a solution to your problem z ∈ H, we
have

‖xn+1 − z‖ ≤ ‖xn − z‖ (72)

Oftentimes, the properties of (Tn)n∈N actually reveal a strictly negative term being added to
‖xn − z‖ on the upper bound in (72). This can sometimes be used to obtain specific rates of
convergence.

(ii) Assume that a cluster point of the algorithm exists. Show that it is a solution of our problem.

Using existing theory about Fejér monotonicity, we can conclude (xn)n∈N converges to a solution
of our problem. Note that we never actually had to prove the algorithm converges.

Remark 4.17 (A retrospective on Theorem 4.15) The Proximal Point Algorithm tells us that, as
long as we can compute the proximity operator of our objective function, we can declare victory.
That’s it, right? Well, it turns out that the story is not quite so simple. In practice, one can
typically compute the proximity operator of each summand in an optimization problem. However,
computing the prox of their sum is much trickier. Tune in next time, for an introduction to splitting
algorithms!

4unfortunately we do not have time to detail the full convergence proofs

15

5 Splitting Algorithms

Let’s start with a motivating example (from “Learning with optimal interpolation norms” by Com-
bettes, McDonald, Miccheli, & Pontil, in Numerical Algorithms, 2019).

Example 5.1 (linear SVM training) Given two datasets D1,D2 ⊂ H, let’s consider the problem of
training a sparse linear separator

minimize
x∈H

∑
d∈D1

max{0, 1− 〈d | x〉}

+

∑
d∈D2

max{0, 1 + 〈d | x〉}

+ λ‖x‖1. (73)

A solution, x∗, to (73) is used to classify unobserved data u by looking at the sign of a scalar
product: if 〈u | x∗〉 > 0, we predict u ∈ D1; for 〈u | x∗〉 < 0, we predict u ∈ D2. The first
two sums are composed of hinge loss functions based on our two datasets. The final term ‖ · ‖1
is used to promote sparsity of x. Loosely speaking, x is “sparse” if it has a small number of
nonzero components. The larger value of λ, the more sparse x∗ becomes. Once a sparse solution
x∗ is found, this makes classification predictions very efficient (particularly in high-dimensional
settings), because we only have to look at the nonzero components of x∗ in order to compute
〈u | x∗〉.

If we look at the libraries in Remark 4.11, the objective function in Example 5.1 does not appear
anywhere! We can find the prox of an individual hinge loss and the prox of ‖ · ‖1. However it looks
like we can’t compute the prox of the sum! This exemplifies a more general problem, an instance
of which is summarized below.

Question 5.2

Given f, g ∈ Γ0(H) and access to compute Prox f and Prox g, can we efficiently compute Prox f+g?

If a generic answer to Question 5.2 were available, we could just apply the Proximal Point Algorithm
(Theorem 4.15) to declare victory. For some settings, we have a positive answer to this question:

Example 5.3 Let U and V be orthogonal vector subspaces of H. Then (as demonstrated in class)

Prox ιU+ιV = Prox ιU∩V = Proj U∩V = Proj U ◦ Proj V = Prox ιU ◦ Prox ιV . (74)

Hence, for this setting, the prox of the sum is expressed as the composition of prox operators.

However, outside of special instances like Example 5.3, a satisfactory answer to Question 5.2
has not been found. Therefore, the research community has circumvented this issue by producing
algorithms which converge to minimizers of (f + g) without requiring an answer to Question 5.2.
Loosely speaking, this class of algorithms are known as splitting algorithms, and their hallmark
characteristic is that they only rely on operators associated with the individual summands of the
objective function. Below, we present the Forward-Backward algorithm, which minimizes a sum of

16

a smooth function g ∈ Γ0(H) and another (potentially nonsmooth) function f ∈ Γ0(H). Instead of
requiring Prox f+g, we only rely on Prox f and evaluating ∇g. The specific form below comes from
Proposition 28.13 in Bauschke/Combettes’ book.

Theorem 5.4 (Forward-Backward Algorithm) Let f ∈ Γ0(H), let L > 0, and let g ∈ Γ0(H) be
L-smooth. Let γ ∈]0, 2/L[and set δ = 2 − γL/2. Let (λn)n∈N be a sequence in [0, δ] such that∑

n∈N λn(δ − λn) = +∞ and let x0 ∈ H. Suppose (f + g) has a minimizer. Iterate

for n = 0, 1, . . .⌊
yn = xn − γ∇g(xn) # Gradient (forward) step
xn+1 = xn + λn(Prox γfyn − xn). # Prox (backward) step

(75)

Then the following hold:

(i) (xn)n∈N converges to a minimizer of f + g.

(ii) (f(xn) + g(xn))− infx∈H f(x) + g(x)↘ 0.

The proof idea follows from the Fejer machinery discussed in Remark 4.16. We can provide an
intuition which demonstrates that fixed-points of the Forward-backward operators in (75) are min-
imizers of f + g. Since g is differentiable, we can use the sum rule. By Fermat’s rule, we have

x minimizes f + g ⇔ 0 ∈ ∂(f + g)(x) (76)

⇔ 0 ∈ ∂f(x) + ∂g(x) (77)

⇔ 0 ∈ ∂f(x) + {∇g(x)} (78)

⇔ −∇g(x) ∈ ∂f(x). (79)

Multiplying by γ and adding x, then using our characterization from Exercise 4.6 we find, for every
n ∈ N,

x minimizes f + g ⇔ x− γ∇g(x) ∈ x+ ∂γf(x). (80)

⇔ x = Prox γf (x− γ∇g(x)) (81)

⇔ λn

(
Prox γf

(
x− γ∇g(x)

)
− x
)

= 0 (82)

⇔ x+ λn

((
Prox γf (x− γ∇g(x)

)
− x
)

= x, (83)

i.e., x is a fixed-point of the algorithm (75).

Example 5.5 Let C be a closed convex subset of H, let f = ιC , and let λn ≡ 1/L. Then, it follows
from Example 4.5 that the popular projected gradient descent algorithm

(∀n ∈ N) xn+1 = Proj C(xn − γ∇g(xn)) (84)

is a special case of the Forward-Backward algorithm (Theorem 5.4).

17

Example 5.6 (LASSO (Tibshirani)) The Forward-backward algorithm can be applied to solve the
LASSO problem,

minimize
z∈H

‖Ax− b‖2 + ‖x‖1. (85)

Now, suppose that we can only use proximity operators – for instance, either I must (because all
of my functions are nonsmooth, as in Example 5.1), or I have read some literature telling me that I
may get better convergence behavior5. Even for the LASSO problem, we could compute this prox:

Exercise 5.7 Let A : Rn → Rm be a matrix and let b ∈ Rm. Compute the proximity operator of

1

2
‖A(·) + b‖2.

hint: Proposition 3.6 and Exercises 4.6 and 3.5.6

One of the standard “prox-only” splitting algorithms for solving

minimize
x∈H

f(x) + g(x) (86)

is the following (whose form is simplified from Corollary 28.3 in the book).

Theorem 5.8 (Douglas-Rachford algorithm) Let f, g ∈ Γ0(H) such that a minimizer of (f + g)
exists, let (λn)n∈N be a sequence in [0, 2] such that

∑
n∈N λn(2−λn) = +∞, and let γ > 0. Let x0 ∈ H

and set

for n = 0, 1, . . . yn = Prox γgxn
zn = Prox γf (2yn − xn)
xn+1 = xn + λn(zn − yn).

(87)

Then (xn)n∈N converges to a minimizer of f + g.

Below is an indication as to why this algorithm works.

Exercise 5.9 (optional) Let R1 = 2Prox γf − Id and let R2 = 2Prox γg− Id. Show that the Douglas-
Rachford algorithm is of the form

xn+1 = xn +
λn
2

(R1(R2xn)− xn) . (88)
5e.g., Combettes & Glaudin, “Proximal activation of smooth functions in splitting algorithms for convex image recov-

ery”, SIAM J. Imaging Sci., 2019, or Briceño-Arias et al., “A random block-coordinate Douglas-Rachford splitting method
with low computational complexity for binary logistic regression”, Comput. Optim. Appl., 2019.

6(or, if you must, use this link for the solution: tiny.cc/b7d7vz)

18

http://tiny.cc/b7d7vz

From Exercise 5.9, we can show an indication as to why fixed points of the Douglas-Rachford
algorithm yield solutions of (86). Let x ∈ H and n ∈ N. Then, using Exercise 5.9, x is a fixed-point
of the Douglas Rachford algorithm if and only if

x = x+
λn
2

(R1(R2x)− x)⇔ 0 =
λn
2

(R1(R2x)− x) (89)

⇔ x = R1(R2x) (90)

⇔ x = R1(2Prox γgx− x) (91)

⇔ x = 2Prox γf (2Prox γgx− x) + x− 2Prox γgx (92)

⇔ Prox γgx = Prox γf (2Prox γgx− x) (93)

⇔

{
y = Prox γgx
y = Prox γf (2y − x).

(94)

Therefore, in view of Exercise 4.6

x = x+
λn
2

(R1(R2x)− x)⇔

{
x− y ∈ ∂γg(y)

(2y − x)− y =∈ ∂γf(y).
(95)

⇔

x− y
γ
∈ ∂g(y)

y − x
γ
∈ ∂f(y).

(96)

Adding implies that 0 ∈ ∂f(y)+∂g(y). One statement I did not mention is that ∂(f)+∂(g) ⊂ ∂(f+g)
basically always holds (while achieving equality for the reverse inclusion requires extra hypotheses,
as discussed in the Sum Rule Theorem 3.14). Hence, by Fermat’s rule (Theorem 3.13), y = Prox γgx
is a minimizer of f + g!

5.1 What about a sum of functions?

Okay great, thanks to the Douglas-Rachford algorithm (Theorem 5.8), we can minimize a sum
of two functions using their proximity operators. But this still does not give us a route to solve
Example 5.1. What about an arbitrary number of functions? For f1, . . . , fm ∈ Γ0(H), I want to
minimize

m∑
i=1

fi(x). (97)

We will start with the following construction.

Exercise 5.10 Let H be a Hilbert space, and consider the m-fold direct sum H = ⊕mi=1H. Let us
define the diagonal subspace:

D = {(xi)mi=1 ∈H | (∀i, j ∈ {1, . . . ,m}) xi = xj } . (98)

19

Show that the projection onto D is obtained by averaging all of the components:

(∀(xi)mi=1 ∈H) ProjD((xi)
m
i=1) =

(
1

m

m∑
i=1

xi

)m
i=1

(99)

Example 5.11 (Product space technique) Let (fi)
m
i=1 be functions on Γ0(H), and suppose I want

to

minimize
x∈H

n∑
i=1

fi(x). (100)

We are going to solve (100) by reformulating it on the product space H =
⊕m

i=1H. Set

f : H→]−∞,+∞] : (xi)
m
i=1 7→

m∑
i=1

fi(xi) and (101)

g = ιD, where D is defined in (98). (102)

Then

minimize
x∈H

f(x) + g(x) = minimize
x1∈H

...
xm∈H

(∀i,j) xi=xj

m∑
i=1

fi(xi) = minimize
x∈H

m∑
i=1

fi(x). (103)

So, using this product space H, we were able to write our original problem (100) in the form (86)
which is tractable with the Douglas Rachford algorithm (Theorem 5.8). Now, we only need the
proximity operators of f and g. However, from Proposition 4.8 and Exercise 5.10 we know that

Prox f (xi)
m
i=1 = (Prox f1(x1), . . . ,Prox fm(xm)) (104)

Prox g(xi)mi=1 = ProjD((xi)
m
i=1) =

(
1

m

m∑
i=1

xi

)m
i=1

, (105)

so we can use DR to minimize (100). This yields the following algorithm.

Algorithm 5.12 (Douglas-Rachford in a product space) Let (fi)
m
i=1 be functions in Γ0(H) such

that a minimizer of (97) exists, let (λn)n∈N be a sequence in [0, 2] such that
∑

n∈N λn(2−λn) = +∞,
and let γ > 0. Let {xi,0}mi=1 ⊂ H and set

for n = 0, 1, . . .
yn = 1

m

∑m
i=1 xi,n # Prox γg step

for i = 1, . . . ,m⌊
zi,n = Prox γfi(2yn − xi,n) # Prox γf step
xi,n+1 = xi,n + λn(zi,n − yn).

(106)

One drawback is that storage scales linearly with the number of summands in our objective. Un-
fortunately, I am not aware of many prox-based methods which can avoid this issue.

Exercise 5.13 If H has dimension d, show that the storage required by the product-space Douglas-
Rachford algorithm (106) scales like O(md).

20

5.2 Practitioners’ notes and algorithmic advances

Remark 5.14 (Computing a prox) If you find yourself needing to compute the prox of a function,
you can oftentimes avoid computing it directly. The easier route is to use existing theory to cobble
together the prox of your specific function. The prox operators of many “base” nonlinear functions
f ∈ Γ0(H) appearing in optimization are available in the libraries discussed in Remark 4.11. From
there, you can use some of the following rules to compute the prox of your “fancier” function g in
terms the prox of your “base” function f . These results (and many, many more) appear in Chapter
24 of the class book. Let z, u ∈ H.

(i) Let g = f(· − z). Then Prox γg(x) = z + Prox γf (x− z).

(ii) Let g = f + α
2 ‖ · −z‖

2 + 〈· | u〉. Then Prox γgx = Prox γ(γα+1)−1f ((γα+ 1)−1(x+ γ(αz − u))).

(iii) Let g(x) = f(−x). Then Prox g(x) = −Prox f (−x).

(iv) Let H = Rn×m be the real Hilbert space of n×m matrices under the Frobenius norm. Let r =
min{m,n} and, for x ∈ H, we denote its reduced SVD with x = U diag (σ1(x), . . . , σr(x))V >.
Let f ∈ Γ0(R) be an even function7. If, for every x ∈ H, g(x) =

∑r
i=1 f(σi(x))ri=1, then

Prox γg = U diag (Prox fσ1(x), . . . , σk(x), 0, . . . , 0)V >, (107)

where k = rank(x).8

(v) Let g = f ◦ L where L is an invertible linear operator such that L−1 = L∗ (e.g., Fourier
transform, DCT, or an orthogonal wavelet transform). Then Prox γgx = L∗(Prox γf (Lx)).

The book has extensive results on how to handle more arcane linear operators than in (v). In the
worst case, one may need to “split” a function f from its linear operator L : H → G, using the graph
of the linear operator via the following technique. By setting G =

{
(x, y) ∈ H × G

∣∣ Lx = y
}

, we
can reformulate a problem on H with a generic linear operator as a problem on the product space
H
⊕
G as follows

inf
x∈H

f(Lx) = inf
(x,y)∈H

⊕
G

Lx=y

f(y) = inf
(x,y)∈H

⊕
G
f(y) + ιG(x, y). (108)

With the reformulation (108) (where, in the final infimum, f is technically viewed as a function
which maps (x, y) to f(y)), one can use any basic splitting algorithm. Formulae for computing
Prox ιG = ProjG are presented in Example 29.19 in the book (note they all require inverting a
linear operator).

7An even function satisfies f(−x) = f(x)
8This result is used to derive the prox of the nuclear norm ‖ · ‖nuc =

∑r
i=1 |σi(·)| which is used in low-rank recovery

problems in data science and image processing.

21

5.3 A few keywords to look up

In the last several decades, there have been a lot of algorithmic “bells and whistles” folks have
added to prox-based algorithms for solving problems of the form (97) (and more generic models
as well). I will hand-wavily discuss a few of them with terminology one could use to search around
in the literature.

(i) Parallelism: For most prox-based algorithms, the lion’s share of computational time is usually
devoted to computing the prox operators (since the other operations are often simple linear
algebra operations). Structures like the product-space DR algorithm in (106) allow the prox
operators in the inner loop to be activated in parallel.

(ii) Block-activation While parallelized algorithms are helpful, processing every Prox fi for i ∈
{1, . . . ,m} may be intractable or prohibitively slow. For some data science applications (e.g.,
in Example 5.1), this corresponds to processing a full epoch over a dataset in every iteration.
This issue has given rise to the advent of block-iterative (or block-activated) algorithms
where, instead of activating every operator (Prox fi)

m
i=1 at every iteration n ∈ N, we only

activate a subset In ⊂ {1, . . . ,m} of them. By re-using old iterates for the “non-activated”
terms in {1, . . . ,m} \ In, we save a lot of computational effort. There are both deterministic
and stochastic variants of these algorithms. For deterministic algorithms, one can select In
such that we expect the computations for (Prox fi)i∈In to finish at roughly the same time.

(iii) Asynchrony In most block-activated methods, we must wait until all of the calculations of
(Prox fi)i∈In are completed before one can perform a synchronization step to complete one
iteration. However, asynchronous algorithms circumvent this waiting issue.

(iv) Extrapolation Many iterative schemes use updates of the form

xn+1 = xn + λndn,

where dn is the “direction” we travel from the current iterate, and λn can be viewed as a
step-size. For most of our algorithms, λn has a fixed upper bound. However (particularly in
early parts of an optimization algorithm), large steps can yield favorable convergence. So,
there are algorithms out there which allow one to use larger values of λn which are computed
on-the-fly during your iteration (rather than pre-scheduled stepsizes, as in the vanilla DR/FB
algorithms).

(v) Acceleration is a method for improving the convergence rate of an algorithm.

These terms are often turned into adjectives in the literature, for instance many Projective
Splitting algorithms9 are parallel, block-activated, and asynchronous.

9e.g., “Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions” by Combettes &
Eckstein, in Math. Program., 2018, or “Projective splitting with forward steps” by Jonstone and Eckstein in Math.
Program., 2022.

22

	Introduction
	Optimization terminology and the extended real line
	Inner product and norms

	Convexity
	What is Differentiability?
	Proximity Operators
	The Proximal Point Algorithm

	Splitting Algorithms
	What about a sum of functions?
	Practitioners' notes and algorithmic advances
	A few keywords to look up

