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Abstract

We propose a novel generalization of the conditional gradient (CG / Frank-Wolfe) algorithm
for minimizing a smooth function f under an intersection of compact convex sets, using a first-
order oracle for ∇f and linear minimization oracles (LMOs) for the individual sets. Although
this computational framework presents many advantages, there are only a small number of al-
gorithms which require one LMO evaluation per set per iteration; furthermore, these algorithms
require f to be convex. Our algorithm appears to be the first in this class which is proven to also
converge in the nonconvex setting. Our approach combines a penalty method and a product-
space relaxation. We show that one conditional gradient step is a sufficient subroutine for our
penalty method to converge, and we provide several analytical results on the product-space
relaxation’s properties and connections to other problems in optimization. We prove that our
average Frank-Wolfe gap converges at a rate of O(ln t/

√
t), – only a log factor worse than the

vanilla CG algorithm with one set.
Keywords. Conditional gradient, splitting, nonconvex, Frank-Wolfe, projection free
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1 Introduction

Given a smooth function f which maps from a real Hilbert space H to R and a finite collection
of m nonempty compact convex subsets (Ci)i∈I of H, we seek to solve the following:

minimize f(x) subject to x ∈
⋂
i∈I

Ci, (1)

which has many applications in imaging, signal processing, and data science [1, 2, 3]. Classical
projection-based algorithms can be used to solve (1) if given access to the operator Proj ⋂

i∈I Ci
.

However, in practice, computing a projection onto
⋂
i∈I Ci is either impossible or numerically

costly, and utilizing the individual projection operators (ProjCi)i∈I is more tractable. This is-
sue has given rise to the advent of splitting algorithms, which seek to solve (1) by utilizing
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operators associated with the individual sets – not their intersection. Projection-based splitting
algorithms – which use the collection of operators (ProjCi)i∈I instead of Proj ⋂

i∈I Ci
– have

made previously-intractable problems of the form (1) solvable with simpler tools on a larger
scale [1, 3, 4].

While splitting methods have successfully been applied to projection-based algorithms, rela-
tively little has been done for the splitting of conditional gradient (CG / Frank-Wolfe) algorithms.
Standard CG algorithms minimize a smooth function f : Rn → R over one closed convex con-
straint set C ⊂ Rn. While the iterates of this algorithm do not converge in general [5], at
iteration t ∈ N, the average Frank-Wolfe gap (which is closely related to showing Clarke sta-
tionarity [8]) converges at a rate of O(1/

√
t), and the primal gap converges at a rate of O(1/t)

when f is convex [6]. A key ingredient of these algorithms is the linear minimization oracle,
LMOC , which computes for a linear objective c ∈ Rn a point in Argmin x∈C〈c , x〉. Similarly to
traditional projection-based methods, computing LMO⋂

i∈I Ci
is often prohibitively costly, so an

algorithm which relies on the individual operators (LMOCi)i∈I would be more tractable.
In principle, if two sets C1 and C2 are polytopes, one could compute LMOC1∩C2

by solving
a linear program which incorporates the LP formulations of both C1 and C2. However, since
the number of inequalities in an LP formulation can scale exponentially with dimension [7,
8], LPs are usually only used to implement a polyhedral LMO if there are no alternatives. In
reality, many polyhedra used in applications, e.g., the Birkhoff polytope and the `1 ball, have
highly specialized algorithms for computing their LMO which are faster than using a linear
program [9]. Hence, splitting algorithms which rely on evaluating the specialized algorithms
for (LMOCi)i∈I gain the favorable scalability of existing LMO implementations.

Conditional gradient methods have seen a resurgence in popularity since, particularly for
high-dimensional settings, LMOs can be more computationally efficient than projections. For
instance, a common constraint in matrix completion problems is the spectrahedron

S = {x ∈ Sn+ |Trace(x) = 1}, (2)

where Sn+ is the set of positive semidefinite n×nmatrices. Evaluating Proj S requires a full eigen-
decomposition, while computing LMOS only requires determining a dominant eigenpair [10].
Clearly, there are high-dimensional settings where evaluating LMOS is possible while Proj S
is too costly [9]. Thus, we are particularly motivated by high-dimensional problems in data
science (e.g., cluster analysis, graph refinement, and matrix decomposition) with these LMO-
advantaged constraints, e.g., the nuclear norm ball, the Birkhoff polytope of doubly stochastic
matrices, and the `1 ball [8, 10, 11, 12, 13, 14, 15].

Inexact proximal splitting methods are a natural choice for solving (1) in our computational
setting, since LMO-based subroutines can approximate a projection. In the convex case, this
approach appears in [16, 17, 18, 19]. However, there is often no bound on the number of
LMO calls required to meet the relative error tolerance required of the subroutine, e.g., in [19].
Methods which require increasingly-accurate approximations can drive the number of LMO calls
in each subroutine to infinity [18], and even if a bound on the number of LMO calls exists, it
often depends on the conditioning of the projection subproblem.

We are interested in algorithms with low iteration complexity, since they are more tractable
on large-scale problems. It appears that, for this computational setting, the lowest iteration
complexity currently requires one LMO per set per iteration [2, 12, 20, 21, 22, 23]. To the
best of our knowledge, all algorithms in this class are restricted to the convex setting. The
case when f = 0 is addressed by [20], the case when (Ci)i∈I have additional structure is
addressed in [21], and a matrix recovery problem is addressed in [22]. The approaches in
[2, 12, 23] essentially show that one CG step is a sufficient subroutine for an inexact augmented
Lagrangian (AL) approach. These methods prove convergence of different optimality criteria at
various rates, e.g., arbitrarily close to O(t−1/3) [2], O(1/

√
t) [21, 23], and (under restrictions
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on m or (Ci)i∈I) O(1/t) [12, 20, 22]. All of these methods, similarly to many projection-based
splitting algorithms, achieve approximate feasibility in the sense that a point in the intersection⋂
i∈I Ci is only found asymptotically.

Our contributions are as follows. We propose a new algorithm in this class for solving (1)
which requires one LMO per set per iteration. Our algorithm generalizes the vanilla CG algo-
rithm in the sense that, whenm = 1, both algorithms are identical. It appears that our algorithm
is the first in this class possessing convergence guarantees for solving (1) in the setting when
f is nonconvex. As is standard in the CG literature, we analyze convergence of the average of
Frank-Wolfe gaps, and we prove a rate of O(ln t/

√
t) – only a log factor slower than the rate

for nonconvex CG over a single constraint (m = 1) [6]. We also prove primal gap convergence
for the convex case. Our theory deviates from the AL approach and shows convergence with
direct CG analysis, without imposing additional structure on our problem. By recasting (1) in
a product space, we derive a penalized relaxation which is tractable with the vanilla CG algo-
rithm. At each step of our algorithm, we perform one vanilla CG step on our product space
relaxation; then, we update the objective function via a penalty. We provide an analytical and
geometric exploration about the properties of this subproblem as its penalty changes, as well
as its relationships to (1) and related optimization problems. In particular, we show that for
any sequence of penalty parameters which approach ∞, our subproblems converge (in several
ways) to the original problem.

Our method combines two classical tools from optimization: a product-space reformulation
and a penalty method. Penalty methods with CG-based subroutines received some attention
several decades ago [24, 25]. Our algorithm is related the Regularized Frank-Wolfe algorithm
of [24], however their requirements do not apply in our setting.

In the remainder of this section, we introduce notation, background, and standing assump-
tions. In Section 2, we demonstrate our product space approach and we establish analytical
results. In Section 3, we introduce our algorithm and prove it converges.

1.1 Notation, standing assumptions, and auxiliary results

Let H be a real Hilbert space with inner product 〈· | ·〉 and identity operator Id. A closed ball
centered at x ∈ H of radius ε > 0 is denoted B(x; ε). Let m ∈ N, set I = {1, . . . ,m}, and let
{ωi}i∈I ⊂ ]0, 1] satisfy

∑
i∈I ωi = 1 (e.g., ωi ≡ 1/m).

H = Hm is the real Hilbert space with inner product 〈· | ·〉H =
∑
i∈I

ωi〈· | ·〉H. (3)

We use bold to denote points x in H, and their subcomponents are x = (x1,x2, . . . ,xm) ∈ H.
We call D =

{
x ∈H

∣∣ x1 = x2 = . . . = xm
}

the diagonal subspace of H. The block averaging
operation and its adjoint are

A : H→ H : x 7→
∑
i∈I

ωix
i and A∗ : H →H : x 7→ (x, . . . , x). (4)

The projection operator onto a closed convex set C ⊂ H is denoted ProjC : H → H : x 7→
Argmin c∈C‖x− c‖. The distance and indicator functions of the set D are denoted

dist D : H→ R : x 7→ inf
z∈D
‖x− z‖ and ιD : H→ [0,+∞] : x 7→

{
0 if x ∈D

+∞ if x 6∈D.
(5)

Note ‖A‖ ≤ 1 and the identities

A∗A = Proj D,
1

2
dist 2

D(x) =
1

2

∑
i∈I

ωi‖Ax− xi‖2, and ∇1

2
dist 2

D = Id− Proj D. (6)
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Unless otherwise stated, let (Ci)i∈I be a collection of nonempty compact convex subsets of
H, let Lf > 0, and let f : H → R be a Gâteaux differentiable function which is Lf -smooth,

(∀(x, y) ∈ H2) f(y)− f(x) ≤ 〈∇f(x) | y − x〉+
Lf
2
‖y − x‖2 (7)

and, when restricted to Section 3.1, also convex,

(∀(x, y) ∈ H2) 〈∇f(x) | y − x〉 ≤ f(y)− f(x). (8)

Fact 1.1 Since ∇dist 2
D/2 = Id − Proj D = Proj D⊥ is a projection operator onto a nonempty

closed convex set, it is 1-Lipschitz continuous and therefore dist 2
D/2 is 1-smooth.

For every i ∈ I and every x ∈ H, the operation LMOi returns a point in Argmin z∈Ci〈x | z〉.
The Frank-Wolfe gap (F-W gap) of f over a compact convex set C ⊂ H at x ∈ H is Gf,C(x) :=
supv∈C 〈∇f(x) | x− v〉 = 〈∇f(x) | x− LMOC(∇f(x))〉. Note that, for every x ∈ H,

x is a stationary point of minimize f(x)
x∈C

⇔

{
x ∈ C
Gf,C(x) ≤ 0.

(9)

Note that if x ∈ C, we always have Gf,C(x) ≥ 0.

Lemma 1.2 Let f and h be real-valued functions on a nonempty set C ⊂ H, let λ,∆ > 0, and
suppose that

x ∈ Argmin
x∈C

f(x) + λh(x) and z ∈ Argmin
z∈C

f(z) + (λ+ ∆)h(z).

Then f(x) ≤ f(z) and h(z) ≤ h(x).

Proof. Since x and z are optimal solutions, we have f(x) + λh(x) ≤ f(z) + λh(z) and f(z) +
(λ+ ∆)h(z) ≤ f(x) + (λ+ ∆)h(x), so in particular,

(λ+ ∆)(h(z)− h(x)) ≤ f(x)− f(z) ≤ λ(h(z)− h(x)). (10)

Subtracting λ(h(z)−h(x)) from (10) implies that h(z)−h(x) ≤ 0 which, in view of (10), yields
f(x)− f(z) ≤ 0. �

We assume the ability to compute ∇f , (LMOi)i∈I , and basic linear algebra opera-
tions, e.g., those in (4). Let f : H → ]−∞,+∞]. The subdifferential of f at x ∈ H
is given by ∂f(x) =

{
u ∈ H

∣∣ (∀y ∈ H) f(x) + 〈u | y − x〉 ≤ f(y)
}

. The epigraph of f is
epi f =

{
(x, η) ∈ H × R

∣∣ f(x) ≤ η
}

. The graph of an operator M : H → 2H is graM ={
(x, u) ∈ H2

∣∣ u ∈M(x)
}

. Some of our analytical results rely on the theory of convergence
of sets and set-valued operators; for a broad review, see [26].

Definition 1.3 Let (Cn)n∈N be a sequence of subsets of Rn, and let (fn)n∈N be functions on
Rn. The outer limit of (Cn)n∈N is lim supn∈N(Cn)n∈N =

{
x ∈ Rn

∣∣ lim supn→+∞ distCn(x) = 0
}

;
the inner limit of (Cn)n∈N is lim infn∈N(Cn)n∈N =

{
x ∈ Rn

∣∣ lim infn→+∞ distCn(x) = 0
}

[26,
Ex. 4.2]. If both limits exist and coincide, this set is the limit of (Cn)n∈N. The sequence (fn)n∈N
converges epigraphically to a function f on Rn if the sequence of epigraphs (epi fn)n∈N converge
to epi f . The sequence (∂fn)n∈N converges graphically to ∂f if (gra ∂fn)n∈N converges to gra ∂f .
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2 Splitting constraints with a product space

This section outlines our algorithm and provides additional analysis relating our approach to
similar problems in optimization.

2.1 Algorithm design

The vanilla conditional gradient algorithm solves

minimize
x∈C

f(x) (11)

using LMOC and gradients of f . However, one of the central hurdles in designing a tractable
CG-based splitting algorithm is finding a way to enforce membership in the constraint

⋂
i∈I Ci

without access to its projection or LMO. Our approach to solving this issue comes from the
following construction on the product space H (see Section 1.1 for notation).

Proposition 2.1 Let (Ci)i∈I be a collection of nonempty subsets of H, and let D ⊂ H denote the
diagonal subspace. Then

(∀x ∈ H) (x, . . . , x) ∈D ∩×
i∈I

Ci ⇔ x ∈
⋂
i∈I

Ci (12)

(∀x ∈H) x ∈D ∩×
i∈I

Ci ⇔ (∃x ∈ H)

{
x = (x, . . . , x)

x ∈
⋂
i∈I Ci,

(13)

Proof. Clear from construction. 1 �

C2

C1

D

D\(C1 × C2)

H

H

Fig. 1: Visualization of the product space for H = R and m = 2. Our algorithm produces iterates xt which are always
inside the shaded constraint set, and their averages A∗Axt are always on the diagonal subspace D. The solid segment
where C1 × C2 and D intersect corresponds precisely to our split feasibility constraint via Proposition 2.1.

1The type of construction in Proposition 2.1 goes back to the work of Pierra [27].
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Proposition 2.1 provides a decomposition of the split feasibility constraint
⋂
i∈I Ci in terms

of two simpler sets D and×i∈I Ci. This yields a product space reformulation of (1)

minimize
x∈×i∈I Ci

f(Ax) + ιD(x). (14)

The constraints D and×i∈I Ci are simpler in the sense that, even in our restricted com-
putational setting, we can compute operators to enforce them. In particular, the projection
onto D is computed by simply repeating the average of all components in every component
Proj Dx = A∗(

∑
i∈I ωix

i). Critically, this operation is cheap, so one can actually evaluate the
gradient ∇dist 2

D/2 = Id − ProjD even though it involves a projection. The constraint×i∈I Ci
is readily processed using the following property.

Fact 2.2 Let (Ci)i∈I be a collection of nonempty compact convex subsets of H. Then

(∀x ∈H) LMO(×i∈I Ci)(x) = (LMOC1 x
1, . . . ,LMOCm xm). (15)

In particular, to evaluate an LMO for the product×i∈I Ci, it suffices to evaluate the individual
operators (LMOi)i∈I once.

With these ideas in mind, let us introduce the penalized function

Fλ : H→ R : x 7→ f(Ax) + λ
1

2
dist 2

D(x), (16)

which, for every λ ≥ 0, is (Lf + λ)-smooth (cf. Fact 1.1). We observe that for every penalty
parameter λt ≥ 0, even under our restricted computational setting, the following relaxation of
(14) is still tractable with the vanilla CG algorithm

minimize
x∈×i∈I Ci

Fλt(x). (17)

Indeed, vanilla CG requires the ability to compute the gradient of the objective function and the
LMO of the constraint. Computing ∇Fλ = ∇f + λ(Id − Proj D) amounts to one evaluation of
∇f , computing one average, and some algebraic manipulations. By promoting membership of
D via the objective function, we are left with the LMO-amenable constraint×i∈I Ci.

The core idea of our algorithm is, at each iteration t ∈ N, to perform one Frank-Wolfe step
to the relaxed subproblem (17). Then, between iterations, we update the objective function in
(17) via λt to promote feasibility. Although (17) is a relaxation of the intractable problem (14),
taking λt →∞ suffices to show convergence in F-W gap (and primal gap, in the convex case) to
solutions of (14) and hence (1); this is substantiated in Sections 2.2.2 and 3. For every x ∈H,
the ith component of the gradient is given by ∇Fλ(x)i = ∇f(Ax) + λ(xi − Ax). So, a CG step
applied to (17) yields Algorithm 1. While Section 3 contains the precise schedules for Lines 3
and 4, the parameters behave like (λt, γt) = (O(ln t),O(1/

√
t)).

CG-based algorithms possess the advantage that, at every iteration, the iterates are feasible
(i.e., for (11), xt ∈ C). Our approach inherits this familiar property; however, since we solve
a product space relaxation, xt ∈×i∈I Ci and hence, for every i ∈ I, the ith component of
our sequence is feasible for the ith constraint, i.e., (xit)t∈N ∈ Ci. Importantly, this does not
guarantee that any subcomponent xit resides in

⋂
i∈I Ci, so they are not feasible for the splitting

problem (1); feasibility in
⋂
i∈I Ci is acquired “in the limit”, by showing that xt ∈×i∈I Ci and

dist D(xt)→ 0 (proven in Section 3).
In practice, one needs a route to construct an approximate solution to (1) in H from an

iterate of Algorithm 1 in the product space H. Instead of taking a component, we use the
average computed in Line 10 as our approximate solution, since

(∀x ∈H) x ∈D ∩×
i∈I

Ci ⇒ Ax ∈
⋂
i∈I

Ci (18)
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Algorithm 1 Split conditional gradient (SCG) algorithm

Require: Smooth function f , weights {ωi}i∈I ⊂ ]0, 1] such that
∑

i∈I ωi = 1, point x0 ∈×i∈I Ci
1: x0 ←

∑
i∈I ωix

i
0

2: for t = 0, 1 to . . . do
3: Choose penalty parameter λt ∈ ]0,+∞[
4: Choose step size γt ∈ ]0, 1]
5: gt ← ∇f(xt) # Store ∇f(Axt) for CG step on (17)
6: for i = 1 to m do
7: vit ← LMOi(gt + λt(x

i
t − xt)) # LMO applied to ∇Fλt(xt)i

8: xit+1 ← xit + γt(v
i
t − xit) # CG step in ith component

9: end for
10: xt+1 ←

∑
i∈I ωix

i
t+1 # Approximate solution by averaging

11: end for

is a strict implication. Hence the conditionAx ∈
⋂
i∈I Ci is easier to satisfy than x ∈D∩×i∈I Ci

(see also Sec. 2.2.1).

Remark 2.3 If we have only m = 1 set constraint, then A = Id, and H = H = D, so at
every iteration t ∈ N, Fλt = f(x). Therefore, the classical CG algorithm is a special case of
Algorithm 1.

2.2 Analysis

Here we gather analytical results pertaining to our algorithm, the geometry of our product-space
construction, and how our relaxed problem relates to other classical problems in optimization.
While these results are interesting in their own right, many are also used to show convergence
in Section 3.

2.2.1 Geometry (and tractability) of penalty functions on the Cartesian product

As seen in Section 2.1, Algorithm 1 promotes split feasibility by, at every iteration t ∈ N, re-
quiring that xt ∈×i∈I Ci and penalizing the distance from xt to D. However, as seen in
(18), dist D(xt) = 0 is a sufficient (but not necessary) condition to acquire a feasible aver-
age Axt ∈

⋂
i∈I Ci; see Fig. 2. In this section, we present a penalty function which precisely

characterizes this condition. Via a simple geometric argument based on the projection theo-
rem, we guarantee that although utilizing this penalty is not computationally tractable, it is
nonetheless minimized when dist D vanishes. These results also further substantiate the claim
that x ∈ D ∩×i∈I Ci is a stricter condition than Ax ∈

⋂
i∈I Ci, which is our motivation to use

the average in Line 10 of Algorithm 1 as our approximate solution to (1).

Proposition 2.4 Let (Ci)i∈I be a collection of nonempty closed convex subsets of H, let D ⊂ H
denote the diagonal subspace, and set

d : H→ ]−∞,+∞] : x 7→
∑
i∈I

ωidist 2
Ci(Ax). (19)

Then, for every x ∈H, the following are equivalent.

(i) d(x) = 0.
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(ii) Ax ∈
⋂
i∈I Ci.

(iii) Proj D(x) ∈×i∈I Ci.

Proof. (i)⇒(ii): For every i ∈ I, 0 ≤ ωidist 2
Ci

(Ax) ≤ d(x) = 0. Since ωi > 0, it follows that
dist 2

Ci
(Ax) = 0 and hence Ax ∈ Ci.

(ii)⇒(iii): By applying A∗ to the inclusion (ii), (6) implies that

Proj Dx = A∗Ax ∈ A∗
⋂
i∈I

Ci =

{
(x, . . . , x) ∈H

∣∣∣∣∣ x ∈ ⋂
i∈I

Ci

}
. (20)

So, by Proposition 2.1, Proj Dx ∈
{
x ∈H

∣∣∣ x ∈D ∩×i∈I Ci

}
⊂×i∈I Ci.

(iii)⇒(i): We begin by observing that

Proj×i∈I Ci(Proj Dx) = Argmin
c∈×i∈I Ci

‖c−A∗Ax‖2H = Argmin
c∈×i∈I Ci

∑
i∈I

ωi‖ci −Ax‖2H (21)

is a separable problem whose solution is (ProjC1(Ax), . . . ,ProjCm(Ax)). Therefore,

d(x) =
∑
i∈I

ωi‖Ax− ProjCi(Ax)‖2H = ‖Proj Dx− Proj×i∈I Ci(Proj Dx)‖2H. (22)

Since Proj D(x) = Proj×i∈I Ci(Proj Dx), we conclude d(x) = 0. �

C2

C1

D

C1 × C2

D\(C1 × C2)

H

H

D (x )

Fig. 2: Zoomed view of Fig. 1. The darker shaded area is the collection of points x ∈×i∈I Ci for which Proj D(x)

remains in×i∈I Ci. By Proposition 2.4, this is the set of points satisfying Ax ∈
⋂

i∈I Ci. This exemplifies that the
implication (18) is strict.

Since we do not assume the ability to project onto the sets (Ci)i∈I , evaluating ∇d =
2
∑
i∈I ωi(Id − ProjCi) is not possible. Therefore, replacing Fλ in (17) with the composite

function f(Ax) +λd(x) is not tractable with a vanilla CG-based approach. However, d is closely
related to our penalty function dist 2

D via the following result.

Corollary 2.5 In the setting of Proposition 2.4, let x ∈×i∈I Ci, set y = Proj Dx and set p =
Proj (×i∈I Ci)(y). Then

d(x) = dist 2
D(x)− ‖x− p‖2 + 2 〈x− p | y − p〉︸ ︷︷ ︸

≤0

. (23)

In consequence, 0 ≤ d(x) ≤ dist 2
D(x).
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Proof. Follows from Lemma 2.12 and Theorem 3.16 of [28]. �

Since the iterates of Algorithm 1 always reside in×i∈I Ci, Corollary 2.5 reinforces our choice
of Axt as our approximate solution of (1). Firstly, its implication that dist 2

D(x) = 0⇒ d(x) = 0
underlines the observation from (18) that Axt ∈

⋂
i∈I Ci is easier to satisfy than x ∈ D ∩

×i∈I Ci. Furthermore, by characterizing the gap between d and dist 2
D, we see that there are

plenty of points for which the inequality between d and dist 2
D is strict, e.g., those x ∈×i∈I Ci

for which x 6= p (see also Fig. 2). Due to this strictness, d(xt) may vanish far before dist 2
D(xt)

vanishes over the iterations of Algorithm 1. This is consistent with our preliminary numerical
observations that Axt ∈

⋂
i∈I Ci often occurs before dist 2

D(xt) vanishes.

Remark 2.6 The function g : x 7→ dist 2⋂
i∈I Ci

(Ax) = ‖Proj Dx − Proj D∩(C1×C2)x‖2 is also a
natural penalty to consider, although evaluating ∇g = 2A∗(Id− Proj ⋂

i∈I Ci
)(Ax) involves com-

puting an intractable projection. While, for every x ∈ H, g and d (see (19)) have the order

d(x) =
∑
i∈I

ωi inf
c∈Ci
‖Ax− c‖2 ≤

∑
i∈I

ωi inf
c∈

⋂
i∈I Ci

‖Ax− c‖2 = g(x), (24)

there is no general ordering between g and our penalty dist 2
D for dim(H) ≥ 2. However, they

are related in the following geometric sense

g(x)+dist 2
D(x) =

∑
i∈I

ωi‖xi−P⋂
i∈I Ci

(Ax)‖2 +2〈A∗P⋂
i∈I Ci

(Ax)−A∗Ax | x−A∗Ax〉︸ ︷︷ ︸
=0

. (25)

Since the lefthand and righthand vectors in the scalar product are in D and D⊥ respectively, g
and dist 2

D describe the squared magnitude of two orthogonal vectors.

C2

C1

D

\(C1 × C2)

H

H

dist2
D

(x )
d(x )

g(x )

ProjDx

ProjD\(C1×C2)
(x )

Fig. 3: Zoomed view of Fig. 1 displaying geometric relationships between dist 2
D, d, and g (see (22) and Re-

mark 2.6). This shows a feasible point x ∈×i∈I Ci and several vectors whose squared magnitude are equal to the
given labels. Corollary 2.5 describes the relative magnitude of dist 2

D and d, as well as the obtuse angle between x,
Proj×i∈I Ci(Proj Dx), and Proj D. Remark 2.6 describes the orthogonality seen in the angle between x, Proj Dx, and
Proj D∩×i∈I Ci(x). We also see Proj D∩×i∈I Cix = Proj D∩×i∈I Ci(Proj Dx), which holds in general [28, Prop. 24.18].
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2.2.2 Interpolating constraints: From the Minkowski sum to the intersection

This section presents an analysis of how our subproblem (17) changes with the parameter λ.
In addition to their utility in Section 3 to prove that our sequence of relaxations (17) actually
solves the correct problem (14), the results in this section show that (17) connects two classical
problems in optimization.

From a certain perspective, (17) “interpolates” from the following problem (when λ = 0)
over the Minkowski sum

minimize
x∈

∑
i∈I ωiCi

f(x), where
∑
i∈I

ωiCi =

{∑
i∈I

ωic
i
∣∣ (∀i ∈ I) ci ∈ Ci

}
, (26)

to the splitting problem (1) (when λ↗ +∞). We shall make this latter observation precise via
several notions of convergence in Proposition 2.12.

Remark 2.7 While this article is predominantly focused on (1), it is worth noting that, when
λ = 0, the problems (17) and (26) coincide in the sense that, for every solution x∗ of (17),
Ax∗ solves (26) (and for every solution

∑
i∈I ωix

i of (26), (xi)i∈I solves (17)). Therefore,
Fact 2.2 leads to a Frank-Wolfe approach to solving (26). The Minkowski sum constraint arises
in Bayesian learning, placement problems, and robot motion planning [29, 30, 31, 32].

We begin with the following observations about how Fλ relates as λ varies.

Lemma 2.8 Let f : H → R, let λ,∆ ∈ R, let D ⊂ H be nonempty, and set Fλ : x 7→ f(Ax) +
λdist 2

D(x)/2. Then,

(∀x ∈H) Fλ(x) = Fλ+∆(x)−∆
1

2
dist 2

D(x). (27)

In consequence, if ∆ ≥ 0, then Fλ(x) ≤ Fλ+∆(x) and inf Fλ(×i∈I Ci) ≤ inf Fλ+∆(×i∈I Ci).

Proof. Fλ(x) = f(Ax) + (λ+ ∆)dist 2
D(x)/2−∆dist 2

D(x)/2 = Fλ+∆(x)−∆dist 2
D(x)/2. �

Next, we show that the optimal value of (17) is sandwiched between that of the splitting
problem (1) and the Minkowski sum problem (26).

Proposition 2.9 Let f : H → R, let λ ≥ 0, let D ⊂ H be nonempty, set Fλ : x 7→ f(Ax) +
λdist 2

D(x)/2, and let (Ci)i∈I be a collection of nonempty compact convex subsets of H such that⋂
i∈I Ci 6= ∅. Then

inf
x∈

⋂
i∈I Ci

f(x) ≥ inf
x∈×i∈I Ci

Fλ ≥ inf
x∈

∑
i∈I ωiCi

f(x). (28)

Proof. To show the first inequality, we note that for every x ∈ D, dist 2
D(x) = 0, so using the

product space formulation (14) of (1),

inf
x∈

⋂
i∈I Ci

f(x) = inf
x∈D∩×i∈I Ci

f(Ax) +
λ

2
dist 2

D(x) ≥ inf
x∈×i∈I Ci

Fλ(x). (29)

The second inequality follows from the observation that (26) coincides with infx∈×i∈I Ci F0(x),
so by Lemma 2.8 we have infx∈×i∈I Ci Fλ(x) ≥ infx∈×i∈I Ci F0(x). �

It turns out that, for an increasing sequence of penalty parameters (λn)n∈N, the ordering
of Proposition 2.9 is preserved if we only consider the optimal values of f (instead of Fλ).
Intuitively, the order is reversed when we compare optimal values of the penalty dist 2

D.
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Corollary 2.10 Let f : H → R, let D ⊂ H be nonempty, set Fλ : x 7→ f(Ax) + λdist 2
D(x)/2,

and let (Ci)i∈I be a collection of nonempty compact convex subsets of H such that
⋂
i∈I Ci 6= ∅.

Suppose that (λt)t∈N is an increasing sequence of real numbers and, for every t ∈ N, let x∗t be a
minimizer of Fλt over×i∈I Ci. Then

inf
x∈

⋂
i∈I Ci

f(x) ≥ f
(
Ax∗t+1

)
≥ f (Ax∗t ) ≥ inf

x∈
∑
i∈I ωiCi

f (x) . (30)

If z ∈ Argmin x∈×i∈I Cif (Ax) (i.e., Az solves (26)), then

0 ≤ dist 2
D(x∗t+1) ≤ dist 2

D(x∗t ) ≤ dist 2
D(z). (31)

Proof. Follows from Lemma 1.2 and Proposition 2.9. �

The following example demonstrates that the penalty sequence (λt)t∈N may need to tend to
+∞ in order for the solutions of (17) and (1) to coincide.

Example 2.11 Set H = R, set f = ‖x‖2/2, let z ≥ 0, set C1 = {z}, and set C2 = [−z− 1, z+ 1].
Clearly, z = Argmin x∈C1∩C2

f(x). However, it is straightforward to verify that, for every λ ≥ 0,
x∗λ = ((λ−1)z/(1+λ), z) is the unique minimizer of Fλ over C1×C2. Since Ax∗λ = λz/(1+λ) 6=
z, the solutions of (17) and (1) (via (14)) do not coincide for finite λ; taking λ → +∞ implies
Ax∗λ → z.

The following result establishes three notions of convergence (see Definition 1.3) relating
the problems (17) and (1) (via its equivalent product space formulation (14)). For this result,
we rely on the fact that every constrained optimization problem can be described using a single
objective function via the use of indicator functions.

Proposition 2.12 Let f : H → R, let (Ci)i∈I be a collection of nonempty compact convex subsets
ofH such that

⋂
i∈I Ci 6= ∅, and let D denote the diagonal subspace of H. Suppose that (λt)t∈N →

+∞ and, for every t ∈ N, set f t = f ◦A+ λtdist 2
D/2 + ι×i∈I Ci . Then the following hold.

(i) f t converges pointwise to f ◦A+ ιD∩×i∈I Ci .
(ii) Suppose H = Rn. Then f t converges epigraphically to f ◦A+ ιD∩×i∈I Ci .

(iii) Suppose H = Rn and f is convex. Then ∂fn converges graphically to ∂(f ◦A+ ιD∩×i∈I Ci).

Proof. Since

ι×i∈I Ci + ιD = ιD∩×i∈I Ci , (32)

it suffices to show that λtdist 2
D/2 converges to ιD under each notion of convergence.

(i): Let x ∈H. If x ∈ D, then for every n ∈ N, λtdist 2
D(x)/2 = 0 = ιD(x). On the other hand,

if x 6∈D, then 0 < λtdist 2
D(x)/2→ +∞ = ιD(x).

(ii): Let x ∈H. By [26, Proposition 7.2], it suffices to show both of the following.

For some sequence (xt)t∈N converging to x, lim sup
t∈N

λt
2

dist 2
D(xt) ≤ ιD(x). (33)

For every sequence (xt)t∈N converging to x, lim inf
t∈N

λt
2

dist 2
D(xt) ≥ ιD(x). (34)

To realize (33), we consider the constant sequence (xt)t∈N ≡ x. By (i),

lim sup
t∈N

λtdist 2
D(xt)/2 = lim

t∈N
λtdist 2

D(x)/2 = ιD(x), (35)
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so this is always satisfied with equality. To show (34), let (xt)t∈N be a sequence converging to
x. If x ∈ D, then since dist 2

D ≥ 0 and ιD(x) = 0, (34) holds. Otherwise, if x 6∈ D, then there
exists a radius ε > 0 such that B(x; ε) ∩D = ∅. Since dist 2

D is continuous and only vanishes
on D, we know η := infy∈B(x;ε/2) dist 2

D(y)/2 > 0. Therefore, since xt → x, we have that, for
some N ∈ N, n > N implies that xt ∈ B(x; ε/2), hence

λt
2

dist 2
D(xt) ≥ λtη → +∞. (36)

In particular, limt∈N λtdist 2
D(xt)/2 = +∞ = ιD(x) so we are done.

(iii): Follows from (ii) and Attouch’s Theorem [26, Theorem 12.35]. �

In general, the functions in Proposition 2.12 do not converge uniformly2. In spite of this, it
turns out that one can nonetheless commute the limit with an infimum, hence showing that the
optimal values of our subproblems (17) converge to the optimal value of (1).

Proposition 2.13 Let f : H → R, let (Ci)i∈I be a collection of nonempty compact convex subsets
of H, let D denote the diagonal subspace of H, and for every λ ≥ 0, set Fλ : x 7→ f(Ax) +
λdist 2

D(x)/2. Suppose that (λn)n∈N ↗ +∞. Then

lim
t→+∞

(
inf

x∈×i∈I Ci
Fλt(x)

)
→ inf

x∈×i∈I Ci

(
lim
t→∞

Fλt(x)
)

= inf
x∈

⋂
i∈I Ci

f(x). (37)

Proof. First, we point out that the equality in (37) follows from Proposition 2.12 and the fact that
the minimal values of (1) and (14) coincide. Let µ < infx∈

⋂
i∈I Ci

f(x) = infx∈×i∈I Ci f(Ax) +

ιD(x). By Proposition 2.12, for every x ∈×i∈I Ci, limt→∞ Fλt(x) = f(Ax) + ιD(x) > µ. Since

×i∈I Ci is compact, for t ∈ N sufficiently large, infx∈×i∈I Ci Fλt(x) ≥ µ, which implies (via
Proposition 2.9 for the second inequality)

µ ≤ lim
t→∞

(
inf

x∈×i∈I Ci
Fλt(x)

)
≤ inf
x∈

⋂
i∈I Ci

f(x). (38)

Taking µ ↑ infx∈
⋂
i∈I Ci

f(x) completes the result. �

3 Convergence of Algorithm 1

We first prove that Algorithm 1 converges in function value when f is convex (Section 3.1).
Then, we establish guarantees for stationarity in general (Section 3.2). We begin with an esti-
mate which is used for both settings.

Lemma 3.1 Let (Ci)i∈I be a finite collection of nonempty compact convex subsets of H with diam-
eters {Ri}i∈I ⊂ [0,+∞[, and let D denote the diagonal subspace of H. Suppose that

⋂
i∈I Ci 6= ∅.

Then (
∀x,y ∈×

i∈I
Ci

)
dist 2

D(x) ≤
∑
i∈I

ωiR
2
i and ‖x− y‖2 ≤

∑
i∈I

ωiR
2
i . (39)

2Uniform convergence for extended-real valued functions is defined in [26].
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Proof. Since, for every i ∈ I, Proj ⋂
i∈I Ci

(Ax) ∈ Ci, (25) yields the upper bound

dist 2
D(x) ≤

∑
i∈I

ωi‖xi − Proj ⋂
i∈I Ci

(Ax)‖2 ≤
∑
i∈I

ωiR
2
i . (40)

For the second bound, ‖x− y‖2 =
∑
i∈I ωi‖xi − yi‖2 ≤

∑
i∈I ωiR

2
i . �

3.1 Convex setting

Here we show that, if f is convex, Algorithm 1 achieves an O(ln t/
√
t) convergence rate in

terms of the primal value gap of our subproblems (17). In tandem with Proposition 2.12,
this establishes function value convergence. Unlike the Augmented Lagrangian approaches [2,
12, 23], our analysis does not require further assumptions concerning the relative interiors of
(Ci)i∈I , making it consistent with traditional Frank-Wolfe theory [8, Section 2.1].

Lemma 3.2 Let f be convex and Lf -smooth, let D denote the diagonal subspace of H, let (Ci)i∈I
be a finite collection of nonempty compact convex subsets of H with diameters {Ri}i∈I ⊂ [0,+∞[
such that

⋂
i∈I Ci 6= ∅, and for every λ ≥ 0, set Fλ : H→ ]−∞,+∞] : x 7→ f(Ax)+λdist 2

D(x)/2,
set x∗t ∈ Argmin x∈×i∈I CiFλt(x), and set Ht = Fλt(xt) − Fλt(x∗t ). Suppose that (λt)t∈N is an
increasing sequence. Then the iterates of Algorithm 1 satisfy

Ht+1 ≤ (1− γt)Ht +
(λt+1 − λt)

2

∑
i∈I

ωiR
2
i + γ2

t

(λt + Lf )

2

∑
i∈I

ωiR
2
i . (41)

Proof. Let us begin by observing that Fλt is convex and Lf + λt-smooth (cf. Fact 1.1). Since
Algorithm 1 performs one step of the vanilla CG algorithm to (17), a standard CG argument [8]
(relying on smoothness (7), Line 7 and Fact 2.2, then convexity (8)) shows

Fλt(xt+1)− Fλt(xt) ≤ γt
(
Fλt(x

∗
t )− Fλt(xt)

)
+ γ2

t

Lf + λt
2

∑
i∈I

ωiR
2
i . (42)

Using Lemma 2.8, then adding Fλt(xt)− Fλt(x∗t ) to both sides of (42) reveals

Ht+1 ≤ Fλt+1(xt+1)− Fλt(x∗t ) (43)

= Fλt(xt+1)− Fλt(x∗t ) +
λt+1 − λt

2
dist 2

D(xt+1) (44)

≤ (1− γt)Ht +
λt+1 − λt

2
dist 2

D(xt+1) + γ2
t

Lf + λt
2

∑
i∈I

ωiR
2
i . (45)

Finally, Lemma 3.1 finishes the result. �

Theorem 3.3 In the setting of Lemma 3.2, for every t ≥ 0 set γt = 2/(
√
t+ 2). Let λ0 > 0 and for

every t ≥ 1 set λt+1 = λt +λ0(
√
t+ 2)−2. Then, for every t ∈ N, the iterates of Algorithm 1 satisfy

0 ≤ Ht ≤ 2
∑
i∈I

ωiR
2
i

(
λ0(2 ln(

√
t+ 2) + 1

4 ) + Lf√
t+ 2

+
4λ0

(
√
t+ 2)2

)
. (46)

In particular, Fλt(xt) → infx∈
⋂
i∈I Ci

f(x) and dist D(xt) → 0. Furthermore, every accumulation
point x∞ of (xt)t∈N produces a solution Ax∞ ∈

⋂
i∈I Ci such that f(Ax∞) = infx∈

⋂
i∈I Ci

f(x).
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Proof. For notational convenience, set R =
∑
i∈I ωiR

2
i and ξ : R → R : s 7→ 2 ln(

√
s + 2) +

4/(
√
s + 2). By calculus, for every t ∈ N such that t ≥ 1, λt − λ0 ≤ λ0ξ(t − 1) − λ0ξ(1), so

λt ≤ λ0ξ(t − 1). We shall proceed by induction. The base case for t = 0 follows from (7), (9),
and Lemma 3.1. Next, we suppose that (46) holds for t ∈ N. Our inductive hypothesis, bound
on λt, and (41) yield

Ht+1 ≤ (1− γt)

(
2R

λ0ξ(t) + Lf + λ0

4√
t+ 2

)
+
λt+1 − λt

2
R+ γ2

t

(Lf + λ0ξ(t− 1))R

2
(47)

=

√
t√

t+ 2

(
2R

λ0ξ(t) + Lf + λ0

4√
t+ 2

)
+ 2R

(
Lf + λ0

4

(
√
t+ 2)2

+
λ0ξ(t− 1)

(
√
t+ 2)2

)
(48)

≤
√
t+ 1

(
√
t+ 2)2

(
2R(Lf +

λ0

4
+ λ0ξ(t+ 1))

)
(49)

≤ 1√
t+ 1 + 2

(
2R(Lf +

λ0

4
+ λ0ξ(t+ 1))

)
, (50)

where (49) is because ξ is increasing and (50) is because and (
√
t + 1)(

√
t+ 1 + 2) ≤

(
√
t + 2)2. Having shown (46), we point out that Proposition 2.13 implies limt→∞ Fλt(x

∗
t ) =

infx∈
⋂
i∈I Ci

f(x). Hence limt→∞ Fλt(xt) exists and, via (46), is equal to infx∈
⋂
i∈I Ci

f(x). Since
λt → ∞, it must be that dist 2

D(xt) → 0. Therefore, every accumulation point x∞ ∈×i∈I Ci
must also reside in D, so Ax∞ ∈

⋂
i∈I Ci. Passing to a subsequence, since f is continuous we

have

inf
x∈

⋂
i∈I Ci

f(x) ≤ f(Ax∞) = lim
k→∞

f(Axtk) ≤ lim
k→∞

Fλtk (xtk) = inf
x∈

⋂
i∈I Ci

f(x). (51)

�

Note that, although Theorem 3.3 shows convergence of the primal gaps of the subproblem
(17), these gaps are never actually computed in practice, since x∗t is inaccessible. We also point
out that, for the choice of λ0 = Lf , our convergence rate becomes scale-invariant.

The convergence rate in Theorem 3.3 is atypical of CG algorithms with convex objective
functions, because they usually have an O(1/t) convergence rate. This was achieved in the split-
LMO setting under the condition m = 2 in [20, 22] and with a Slater-type condition in [12] by
choosing stepsizes of magnitude γt = O(1/t). However, in order to achieve convergence in the
proof of Theorem 3.3 with this larger stepsize, this would necessitate that λt+1 − λt ≤ O(1/t2),
i.e., λt 6→ ∞. Since Example 2.11 establishes that λt →∞ can be necessary (supported also by
Proposition 2.12), we would no longer be able to show that the sequence of relaxed subproblems
(17) converges to the original splitting problem (1). So, using a faster stepsize schedule would
still yield a convergent algorithm, but it would not necessarily solve (1). We shall consider the
topic of achieving a faster rate with extra assumptions in future work.

Remark 3.4 Without additional assumptions, Algorithm 1 does not guarantee iterate conver-
gence of (xt)t∈N, which is consistent with other CG methods [5]. If, for instance, f is also
µ-strongly convex, then Theorem 3.3 can be strengthened to provide convergence of the av-
erages, because Ax∗t converges to the unique solution x∗ of (1) and 0 ≤ µ‖Axt − Ax∗t ‖/2 ≤
Fλt(xt)− Fλt(x∗t )→ 0, so Axt → x∗ as well.
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3.2 Nonconvex setting

For CG methods which address (11) in the case when f is nonconvex, it is standard to show that
the Frank-Wolfe gap at x ∈ H, Gf,C(x) := supv∈C 〈∇f(x) | x− v〉, converges to zero, because f
is stationary at x ∈ C whenever the F-W gap vanishes (9) [8]. Since F-W gaps are highly variable
between iterations, convergence rates are typically derived for the average of F-W gaps. In this
section, we consider the F-W gaps for our subproblems (17) which converge to (1) (in the sense
of Proposition 2.12).

We begin by connecting the F-W gaps of our subproblems (17) to that of the original problem
(1). In particular, for every λ ≥ 0 the Frank-Wolfe gaps of our subproblems at x ∈×i∈I Ci
provide an upper bound to both the penalty λdist 2

D and the F-W gap of the original problem (1)
at Ax. Interestingly, although GFλ,×i∈I Ci(xt) ≥ 0 is guaranteed, the F-W gap for the splitting
problem (1), namely Gf,⋂i∈I Ci(Axt), may actually be negative since Axt is not guaranteed to
reside in

⋂
i∈I Ci after a finite number of iterations.

Lemma 3.5 Let f be smooth, set βf = supx∈×i∈I Ci ‖∇f(x)‖, let D ⊂ H denote the di-
agonal subspace of H, let (Ci)i∈I be a finite collection of nonempty compact convex subsets
of H with diameters {Ri}i∈I ⊂ [0,+∞[ such that

⋂
i∈I Ci 6= ∅, and for every λ ≥ 0, set

Fλ : H→ ]−∞,+∞] : x 7→ f(Ax) + λdist 2
D(x)/2. Then, for every x ∈H,

sup
v∈×i∈I Ci

〈∇Fλ(x) | x− v〉 ≥ sup
v∈

⋂
i∈I Ci

〈∇f(Ax) | Ax− v〉+λdist 2
D(x) ≥ −βf

∑
i∈I

ωiRi. (52)

Proof. First, by infimizing over a subset of×i∈I Ci, we find

inf
v∈×i∈I Ci

〈∇Fλ(x) | v − x〉 = inf
v∈×i∈I Ci

〈A∗∇f(Ax) + λ(x−A∗Ax) | v − x〉 (53)

≤ inf
v∈D∩×i∈I Ci

〈∇f(Ax) | Av −Ax〉+ λ〈x−A∗Ax | v − x〉.

(54)

Since x−A∗Ax ∈D⊥ and A∗Ax ∈D, we have the following identity for every v ∈D

〈x−A∗Ax | v − x〉 = 〈x−A∗Ax | −A∗Ax− (x−A∗Ax)〉 = −‖x−A∗Ax‖2. (55)

So, using Proposition 2.1 for a change of variables, we set set p = Proj ⋂
i∈I Ci

(Ax) to find that

inf
v∈×i∈I Ci

〈∇Fλ(x) | v − x〉 ≤ inf
v∈

⋂
i∈I Ci

〈∇f(Ax) | v −Ax〉 − λdist 2
D(x) (56)

≤ 〈∇f(Ax) | p−Ax〉 − λdist 2
D(x) (57)

≤ βfdist ⋂
i∈I Ci

(Ax)− λdist 2
D(x) (58)

≤ βf
∑
i∈I

ωiRi, (59)

since dist ⋂
i∈I Ci

(Ax) = ‖
∑
i∈I ωi(x

i − p)‖ ≤
∑
i∈I ωiRi. Finally, negation yields (52). �

With these results in-hand, we can now prove our main result.
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Theorem 3.6 Let f be Lf -smooth, let D ⊂H denote the diagonal subspace of H, let (Ci)i∈I be a
finite collection of nonempty compact convex subsets of H with diameters {Ri}i∈I ⊂ [0,+∞[ such
that

⋂
i∈I Ci 6= ∅, and for every λ ≥ 0, set Fλ : H→ ]−∞,+∞] : x 7→ f(Ax) +λdist 2

D(x)/2. Set
γt = 1/

√
t+ 1, let λ0 > 0, and for every t ≥ 1, set λt = λ0

∑t−1
k=0 1/(k + 1). Then, for every t ≥ 1,

the iterates of Algorithm 1 satisfy3

0 ≤ 1

t

t−1∑
k=0

sup
v∈×i∈I Ci

〈
∇Fλk(xk)

∣∣ xk − v
〉
≤ O

(
ln t√
t

+
1√
t

)
. (60)

In particular, there exists a subsequence (tk)k∈N such that (〈∇Fλtk (xtk) | xtk − vtk〉)k∈N → 0.
Furthermore, every accumulation point x∞ of (xtk)k∈N yields a stationary point Ax∞ ∈

⋂
i∈I Ci

of the problem (1).

Proof. We begin by setting vt = (vit)i∈I ∈×i∈I Ci and recalling that Fλt is (Lf + λt)-smooth.
For every t ∈ N, let x∗t be a minimizer of Fλt over×i∈I Ci. For notational convenience, set
Ht = Fλt(xt) − Fλt(x∗t ), R =

∑
i∈I ωiR

2
i , RA =

∑
i∈I ωiRi, and B = max{βp

√
R,R}. By the

optimality of vt (Fact 2.2 and Line 7) and the smoothness inequality (7),

0 ≤ γt〈∇Fλt(xt) | xt − vt〉 ≤ Fλt(xt)− Fλt(xt+1) + γ2
t

Lf + λt
2

‖vt − xt‖2. (61)

So, using Lemma 2.8 and Lemma 3.1 twice,

0 ≤ 〈∇Fλt(xt) | xt − vt〉 (62)

≤
Fλt(xt)− Fλt+1

(xt+1)

γt
+
λt+1 − λt

γt
dist 2

D(xt+1) + γt
Lf + λt

2
R (63)

≤
Fλt(xt)− Fλt+1(xt+1)

γt
+
λt+1 − λt

γt
R+ γt

Lf + λt
2

R. (64)

Furthermore, since f and dist 2
D/2 are smooth and

∑
i∈I ωiCi and×i∈I Ci are compact, it fol-

lows that their gradients are bounded. Hence, f and dist 2
D/2 are Lipschitz continuous on these

sets, with constants βf := supc∈
∑
i∈I ωiCi

‖∇f(c)‖ and βp := supc∈×i∈I Ci ‖∇dist 2
D(c)/2‖ re-

spectively. Therefore, we find that by Jensen’s inequality and Lemma 3.1,

Ht ≤ βf‖Axt−Ax∗t ‖+λtβp‖xt−x∗t ‖ ≤ βf
∑
i∈I

ωiRi+λtβp

√∑
i∈I

ωiR2
i = βfRA+λtβp

√
R. (65)

3Precise constants are in (77).
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By Lemma 2.8, we have γ−1
t (Fλt+1(x∗t+1)− Fλt(x∗t )) ≥ 0. Combining all of these facts, we find

0 ≤
t−1∑
k=0

〈
∇Fλk(xk)

∣∣∣∣ xk − vk

〉
(66)

≤
t−1∑
k=0

(
Fλk(xk)− Fλk+1

(xk+1)

γk
+
λk+1 − λk

γk
R+ γk

Lf + λk
2

R

)
(67)

≤
t−1∑
k=0

(
Hk −Hk+1

γk
+
λk+1 − λk

γk
R+ γk

Lf + λk
2

R

)
(68)

=
H0

γ0
− Ht

γt−1
+

t−1∑
k=1

(
1

γk
− 1

γk−1

)
Hk +

t−1∑
k=0

(
λk+1 − λk

γk
R+ γk

Lf + λk
2

R

)
(69)

≤ βfRA + λ0βp
√
R

γ0
+

t−1∑
k=1

(
1

γk
− 1

γk−1

)(
βfRA + λkβp

√
R
)

+

t−1∑
k=0

(
λk+1 − λk

γk
R+ γk

Lf + λk
2

R

) (70)

≤ βfRA + λ0B

γ0
+

t−1∑
k=1

(
1

γk
− 1

γk−1

)
(βfRA + λkB) +

t−1∑
k=0

λk+1 − λk
γk

B

+

t−1∑
k=0

γk
Lf + λk

2
R

(71)

=
βfRA + λtB

γt−1
+

t−1∑
k=0

γk
Lf + λk

2
R, (72)

where we use Lemma 2.8 in (68), drop a negative term and use (65) in (70), and simplify in
(72). Next, we note that

∑t−1
k=0 γk ≤ 2

√
t and λt ≤ λ0(ln(t+ 1) + 1), so

0 ≤ 1

t

t−1∑
k=0

〈
∇Fλk(xk)

∣∣∣∣ xk − vk

〉
(73)

≤ βfRA + λtB√
t

+
1

t

t−1∑
k=0

γk
Lf + λk

2
R (74)

≤ βfRA + λtB√
t

+
1

t
(Lf + λt−1)

t−1∑
k=0

γk
1

2
R (75)

≤ βfRA + λ0(ln(t+ 1) + 1)B√
t

+
1√
t
(Lf + λ0(ln(t) + 1))R (76)

≤ 1√
t

(
βf
∑
i∈I

ωiRi + (Lf + λ0)
∑
i∈I

ωiR
2
i + λ0B

)
+

ln(t+ 1)√
t

λ0

(∑
i∈I

ωiR
2
i +B

)
, (77)

which establishes (60). Since the Frank-Wolfe gaps (〈∇Fλt(xt) | xt − vt〉)t∈N are positive
and the sequence of averages goes to zero, the existence of a subsequence (tk)k∈N such that
〈∇Fλt(xtk) | xtk − vtk〉 → 0 follows. Lemma 3.5 implies that(

sup
v∈

⋂
i∈I Ci

〈∇f(Axtk) | Axtk − v〉+ λtkdist 2
D(xtk)

)
k∈N

(78)
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is bounded. So, since λtk →∞, we must have dist 2
D(xtk)→ 0. Therefore, for every accumula-

tion point x∞ of (xtk)k∈N, x∞ ∈D ∩×i∈I Ci, so Ax∞ ∈
⋂
i∈I Ci and

0 ≤ sup
v∈

⋂
i∈I Ci

〈∇f(Ax∞) | Ax∞ − v〉. (79)

Finally, we can bound the gap above using continuity and Lemma 3.5:

sup
v∈

⋂
i∈I Ci

〈∇f(Ax∞) | Ax∞ − v〉 ≤ lim sup
k→∞

(
sup

v∈
⋂
i∈I Ci

〈∇f(Axtk) | Axtk − v〉

)
(80)

≤ lim sup
k→∞

(
〈∇Fλtk (xtk) | xtk − vtk〉

)
(81)

= 0. (82)

Since Gf,⋂i∈I Ci(Ax∞) = 0, we conclude from (9) that Ax∞ is a stationary point. �

Remark 3.7 We emphasize that, for the cost of one extra inner product, the Frank-Wolfe gap
〈∇Fλt(xt) | xt − vt〉 can be computed while Algorithm 1 is running. So, checking for stationar-
ity in the subproblems (17) is tractable in practice. Also, similarly to the convex-case, the choice
of λ0 = Lf makes our convergence rate in (77) scale-invariant.

4 Conclusion and Future Work

Theorem 3.6 appears to be the first convergence guarantee for solving (1) in the nonconvex
split-LMO setting. Furthermore, our rate of convergence is only one log factor less than the rate
of CG for one constraint (m = 1) [6]. While it is unclear if this log factor can be removed for
the nonconvex setting, we believe that the analysis for the convex rate can be improved since
typically the nonconvex average-F-W-gap rate is quadratically slower than the convex primal
gap rate [6]. This speed-up has been achieved in some settings with algorithms which require
one LMO call per iteration [12, 22], but it appears that the question of whether or not O(1/t)
convergence is possible in the split-LMO setting without additional assumptions remains open.

In addition to the question above, there are several interesting theoretical and numerical in-
vestigations to be performed. One topic is the use of alternative stepsizes and penalty parameter
schedules. The proofs of Theorems 3.3 and 3.6 can easily be extended to a short-step selection
for γt similar to [6] by minimizing the upper bound arising from (7). Another direction is inves-
tigating Algorithm 1 under additional assumptions on the objective or constraints. For instance,
CG algorithms possess accelerated convergence rates when the objective function or constraints
are strongly convex [33, 34]; extending this analysis to Algorithm 1 is also a topic of future
interest. Many projection-based splitting methods have an advantage of being block-iterative,
i.e., instead of requiring a computation for all constraints indexed by I (as is required in the
for loop in Algorithm 1, Line 6) at every iteration t, only a subset It ⊂ I of updates are per-
formed. This can significantly reduce the computational load per iteration, and block-iterative
projection methods enjoy convergence under very mild assumptions on the blocks (It)t∈N [3, 4].
It is worth noting that the inner loop of Algorithm 1 can be parallelized, and a block-iterative
capability would further improve the per-iteration cost. Several LMO-based block-iterative algo-
rithms have been proposed for solving problems like the relaxation (17) [35, 36], but extending
them to solve (1) remains to be done.
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