
1

Motivation Our approach Analysis Numerical experiments References

Breaking the cycle:
Flexible block-iterative
analysis for the
Frank-Wolfe algorithm
ISMP 2024, Montréal, QC
Zev Woodstock*, Gábor Braun, and Sebastian Pokutta

Zuse Institute Berlin (ZIB) & Technische Universität Berlin
Interactive Optimization and Learning (IOL) Lab

July 2024

*- also James Madison University starting Aug. 2024

mailto:woodstock@zib.de

2

Motivation Our approach Analysis Numerical experiments References

Flexible Block-Coordinate Frank-Wolfe Algorithm

1. Motivation

2. Our approach

3. Analysis

4. Numerical experiments

3

Motivation Our approach Analysis Numerical experiments References

Problem setting
Given m nonempty closed convex sets Ci ⊂ Rni with i ∈ {1, . . . ,m} =: I and a smooth
function f : RN → R with N = ∑

i∈I ni , solve

minimize
x∈C1×...×Cm

f (x). (1)

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .

3

Motivation Our approach Analysis Numerical experiments References

Problem setting
Given m nonempty closed convex sets Ci ⊂ Rni with i ∈ {1, . . . ,m} =: I and a smooth
function f : RN → R with N = ∑

i∈I ni , solve

minimize
x∈C1×...×Cm

f (x). (1)

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .
Two families of first-order methods to solve (1): projection methods and
Frank-Wolfe AKA “CG” methods, which use linear minimization oracles.

projC (x) = Argmin
v∈C

‖x − v‖2 LMOC (x) ∈ Argmin
v∈C

〈x | v〉 (2)

3

Motivation Our approach Analysis Numerical experiments References

Problem setting
Given m nonempty closed convex sets Ci ⊂ Rni with i ∈ {1, . . . ,m} =: I and a smooth
function f : RN → R with N = ∑

i∈I ni , solve

minimize
x∈C1×...×Cm

f (x). (1)

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .
Two families of first-order methods to solve (1): projection methods and
Frank-Wolfe AKA “CG” methods, which use linear minimization oracles.

projC (x) = Argmin
v∈C

‖x − v‖2 LMOC (x) ∈ Argmin
v∈C

〈x | v〉 (2)

[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, C , projC is more expensive than LMOC .
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

3

Motivation Our approach Analysis Numerical experiments References

Problem setting
Given m nonempty closed convex sets Ci ⊂ Rni with i ∈ {1, . . . ,m} =: I and a smooth
function f : RN → R with N = ∑

i∈I ni , solve

minimize
x∈C1×...×Cm

f (x). (1)

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .
For x ∈ RN with components x = (x1, . . . , xm) (x i ∈ Rni),

LMOC1×...×Cm (x1, . . . , xm) = (LMOC1x1, . . . , LMOCmxm) ($$$)

3

Motivation Our approach Analysis Numerical experiments References

Problem setting
Given m nonempty closed convex sets Ci ⊂ Rni with i ∈ {1, . . . ,m} =: I and a smooth
function f : RN → R with N = ∑

i∈I ni , solve

minimize
x∈C1×...×Cm

f (x). (1)

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .
For x ∈ RN with components x = (x1, . . . , xm) (x i ∈ Rni),

LMOC1×...×Cm (x1, . . . , xm) = (LMOC1x1, . . . , LMOCmxm) ($$$)

“Let’s avoid computing so many LMOs per iteration!” (paraphrased)

– [Patriksson, ’98], [Lacoste-Julien et al., 2013], [Beck et al., 2015], [Wang et al.,
2016], [Osokin et al., 2016], [Bomze et al., 2024], . . .

4

Motivation Our approach Analysis Numerical experiments References

(Generic) BCFW Algorithm

1: for t = 0, 1 to . . . do
2: Select It ⊂ {1, . . . ,m}
3: g t ← ∇f (xt)
4: for i = 1 to m do
5: if i ∈ It then
6: v i

t ← LMOi (g i
t)

7: γ i
t ← Step size

8: x i
t+1 ← x i

t + γ i
t(v i

t − x i
t)

9: else
10: x i

t+1 ← x i
t

11: end if
12: end for
13: end for

Known modes of convergence:

4

Motivation Our approach Analysis Numerical experiments References

(Generic) BCFW Algorithm

1: for t = 0, 1 to . . . do
2: Select It ⊂ {1, . . . ,m}
3: g t ← ∇f (xt)
4: for i = 1 to m do
5: if i ∈ It then
6: v i

t ← LMOi (g i
t)

7: γ i
t ← Step size

8: x i
t+1 ← x i

t + γ i
t(v i

t − x i
t)

9: else
10: x i

t+1 ← x i
t

11: end if
12: end for
13: end for

Known modes of convergence:

• [Patriksson, 1998]:
— Asymptotic convergence if f convex
— Exact and Armijo linesearches fixed across

all components γ i
t = γt

— Full update (It = {1, . . . ,m})
— Deterministic essentially cyclic (∃K > 0):

It = {it}, with {it , . . . , it+K} = {1, . . . ,m}

4

Motivation Our approach Analysis Numerical experiments References

(Generic) BCFW Algorithm

1: for t = 0, 1 to . . . do
2: Select It ⊂ {1, . . . ,m}
3: g t ← ∇f (xt)
4: for i = 1 to m do
5: if i ∈ It then
6: v i

t ← LMOi (g i
t)

7: γ i
t ← Step size

8: x i
t+1 ← x i

t + γ i
t(v i

t − x i
t)

9: else
10: x i

t+1 ← x i
t

11: end if
12: end for
13: end for

Known modes of convergence:

• [Patriksson, 1998]:
— Asymptotic convergence if f convex
— Exact and Armijo linesearches fixed across

all components γ i
t = γt

— Full update (It = {1, . . . ,m})
— Deterministic essentially cyclic (∃K > 0):

It = {it}, with {it , . . . , it+K} = {1, . . . ,m}

• [Beck et al., 2015]:
— O(m/t) convergence (f convex)
— open-loop, short-step, and backtracking γ i

t
— Deterministic cyclic updates

It = {it}, with {it , . . . , it+m} = {1, . . . ,m}

4

Motivation Our approach Analysis Numerical experiments References

(Generic) BCFW Algorithm

1: for t = 0, 1 to . . . do
2: Select It ⊂ {1, . . . ,m}
3: g t ← ∇f (xt)
4: for i = 1 to m do
5: if i ∈ It then
6: v i

t ← LMOi (g i
t)

7: γ i
t ← Step size

8: x i
t+1 ← x i

t + γ i
t(v i

t − x i
t)

9: else
10: x i

t+1 ← x i
t

11: end if
12: end for
13: end for

Known modes of convergence:

• Stochastic variants:
— O(m/t) primal convergence rate (f convex)
— Uniform singleton selection [Lacoste-Julien

et al., 2013]
— Non-uniform singleton selection (based on

suboptimality criterion) [Osokin et al., 2016]
— Uniform parallel selection with fixed

block-sizes |It | = p [Wang et al., 2016]

4

Motivation Our approach Analysis Numerical experiments References

(Generic) BCFW Algorithm

1: for t = 0, 1 to . . . do
2: Select It ⊂ {1, . . . ,m}
3: g t ← ∇f (xt)
4: for i = 1 to m do
5: if i ∈ It then
6: v i

t ← LMOi (g i
t)

7: γ i
t ← Step size

8: x i
t+1 ← x i

t + γ i
t(v i

t − x i
t)

9: else
10: x i

t+1 ← x i
t

11: end if
12: end for
13: end for

Known modes of convergence:

• Stochastic variants:
— O(m/t) primal convergence rate (f convex)
— Uniform singleton selection [Lacoste-Julien

et al., 2013]
— Non-uniform singleton selection (based on

suboptimality criterion) [Osokin et al., 2016]
— Uniform parallel selection with fixed

block-sizes |It | = p [Wang et al., 2016]
• [Bomze et al., 2024]:

— Linear convergence (KL condition + · · ·)
— Short-Step Chain (SSC) procedure: γ i

t , v i
t

— Full updates (It = {1, . . . ,m})
— Uniform singleton selection (It = {it})
— Gauss-Southwell “greedy” singleton updates

(based on suboptimality criterion).

5

Motivation Our approach Analysis Numerical experiments References

Let’s recap. . .
• Singleton updates:
→ cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random

• Parallel updates:
→ Full (It = {1, . . . ,m}), or uniformly-random blocks of fixed size |It | = p

What if my LMOs have very different costs? What if I only have 4 processor cores?

What about. . .
• deterministic parallel updates?
• blocks with different sizes?
• cost-aware methodologies? (e.g., if some LMOs are numerically expensive, and

others are cheap)

5

Motivation Our approach Analysis Numerical experiments References

Let’s recap. . .
• Singleton updates:
→ cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random

• Parallel updates:
→ Full (It = {1, . . . ,m}), or uniformly-random blocks of fixed size |It | = p

What if my LMOs have very different costs? What if I only have 4 processor cores?

What about. . .
• deterministic parallel updates?
• blocks with different sizes?
• cost-aware methodologies? (e.g., if some LMOs are numerically expensive, and

others are cheap)

5

Motivation Our approach Analysis Numerical experiments References

Let’s recap. . .
• Singleton updates:
→ cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random

• Parallel updates:
→ Full (It = {1, . . . ,m}), or uniformly-random blocks of fixed size |It | = p

What if my LMOs have very different costs? What if I only have 4 processor cores?

What about. . .
• deterministic parallel updates?
• blocks with different sizes?
• cost-aware methodologies? (e.g., if some LMOs are numerically expensive, and

others are cheap)

5

Motivation Our approach Analysis Numerical experiments References

Let’s recap. . .
• Singleton updates:
→ cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random

• Parallel updates:
→ Full (It = {1, . . . ,m}), or uniformly-random blocks of fixed size |It | = p

What if my LMOs have very different costs? What if I only have 4 processor cores?

What about. . .
• deterministic parallel updates?
• blocks with different sizes?
• cost-aware methodologies? (e.g., if some LMOs are numerically expensive, and

others are cheap)

6

Motivation Our approach Analysis Numerical experiments References

Flexible Block-Coordinate Frank-Wolfe Algorithm

1. Motivation

2. Our approach

3. Analysis

4. Numerical experiments

7

Motivation Our approach Analysis Numerical experiments References

A bit of history
Assumption [Ottavy, 1988]

There exists a positive integer K such that, for every iteration t,

(∀1 6 i 6 m) i ∈
t+K−1⋃

n=t
In. (?)

7

Motivation Our approach Analysis Numerical experiments References

A bit of history
Assumption [Ottavy, 1988]

There exists a positive integer K such that, for every iteration t,

(∀1 6 i 6 m) i ∈
t+K−1⋃

n=t
In. (?)

Allows for:
• Deterministic, variable-size, parallel updates

7

Motivation Our approach Analysis Numerical experiments References

A bit of history
Assumption [Ottavy, 1988]

There exists a positive integer K such that, for every iteration t,

(∀1 6 i 6 m) i ∈
t+K−1⋃

n=t
In. (?)

Allows for:
• Deterministic, variable-size, parallel updates
• Already known to converge: Full, cyclic, essentially cyclic, . . .

7

Motivation Our approach Analysis Numerical experiments References

A bit of history
Assumption [Ottavy, 1988]

There exists a positive integer K such that, for every iteration t,

(∀1 6 i 6 m) i ∈
t+K−1⋃

n=t
In. (?)

Allows for:
• Deterministic, variable-size, parallel updates
• Already known to converge: Full, cyclic, essentially cyclic, . . .
• “Lazy” updates: Over K iterations, update expensive LMO(s) once, and update

cheap LMOs multiple times.

7

Motivation Our approach Analysis Numerical experiments References

A bit of history
Assumption [Ottavy, 1988]

There exists a positive integer K such that, for every iteration t,

(∀1 6 i 6 m) i ∈
t+K−1⋃

n=t
In. (?)

Allows for:
• Deterministic, variable-size, parallel updates
• Already known to converge: Full, cyclic, essentially cyclic, . . .
• “Lazy” updates: Over K iterations, update expensive LMO(s) once, and update

cheap LMOs multiple times.

→ We can set the ratio of (expensive LMO evals)
(cheap LMO evals) = 1

K arbitrarily small.

7

Motivation Our approach Analysis Numerical experiments References

A bit of history
Assumption [Ottavy, 1988]

There exists a positive integer K such that, for every iteration t,

(∀1 6 i 6 m) i ∈
t+K−1⋃

n=t
In. (?)

To my knowledge, first appears in [Ottavy, 1988].
Related to lazily updating Hessians in Newton’s method [Shamanskii, 1967]
Apparently never considered for F-W algorithms before!?

7

Motivation Our approach Analysis Numerical experiments References

A bit of history
Assumption [Ottavy, 1988]

There exists a positive integer K such that, for every iteration t,

(∀1 6 i 6 m) i ∈
t+K−1⋃

n=t
In. (?)

To my knowledge, first appears in [Ottavy, 1988].
Related to lazily updating Hessians in Newton’s method [Shamanskii, 1967]
Apparently never considered for F-W algorithms before!? 1967:

Canada
turns 100!

7

Motivation Our approach Analysis Numerical experiments References

A bit of history
Assumption [Ottavy, 1988]

There exists a positive integer K such that, for every iteration t,

(∀1 6 i 6 m) i ∈
t+K−1⋃

n=t
In. (?)

To my knowledge, first appears in [Ottavy, 1988].
Related to lazily updating Hessians in Newton’s method [Shamanskii, 1967]
Apparently never considered for F-W algorithms before!? 1967:

Canada
turns 100!

8

Motivation Our approach Analysis Numerical experiments References

Goals

Under Assumption (?), establish competitive convergence rates.

What we did:
• f convex: O(K/t) rate (for primal gap) using:

— Short-step γ i
t

— An adaptive stepsize scheme γ i
t

• f nonconvex: O(K/
√

t) rate (for F-W optimality gap) using short-step γ i
t

• Some conjectures and interesting analysis along the way. . .

9

Motivation Our approach Analysis Numerical experiments References

Flexible Block-Coordinate Frank-Wolfe Algorithm

1. Motivation

2. Our approach

3. Analysis

4. Numerical experiments

10

Motivation Our approach Analysis Numerical experiments References

Notation and Background
Frank Wolfe gaps

Recall I = {1, . . . ,m}. The Frank-Wolfe gap at x ∈ RN is

GI(x) = 〈∇f (x) | x − LMO×i∈I Ci (∇f (x))〉 =
∑
i∈I
〈∇i f (x) | x i − LMOCi (∇i f (x))〉.

A partial Frank-Wolfe gap is given by

(∀J ⊂ I) GJ(x) =
∑
i∈J
〈∇i f (x) | x i − LMOCi (∇i f (x))〉

Fact
(A) If x ∈×i∈I Ci , then (∀J ⊂ I) GJ(x) > 0.

(B) x is a stationary point of (1) if and only if x ∈×i∈I Ci and GI(x) = 0.

⇒ nonconvex convergence results typically show first order criticality: GI(xt)→ 0.

10

Motivation Our approach Analysis Numerical experiments References

Notation and Background
Frank Wolfe gaps

Recall I = {1, . . . ,m}. The Frank-Wolfe gap at x ∈ RN is

GI(x) = 〈∇f (x) | x − LMO×i∈I Ci (∇f (x))〉 =
∑
i∈I
〈∇i f (x) | x i − LMOCi (∇i f (x))〉.

A partial Frank-Wolfe gap is given by

(∀J ⊂ I) GJ(x) =
∑
i∈J
〈∇i f (x) | x i − LMOCi (∇i f (x))〉

Fact
(A) If x ∈×i∈I Ci , then (∀J ⊂ I) GJ(x) > 0.

(B) x is a stationary point of (1) if and only if x ∈×i∈I Ci and GI(x) = 0.

⇒ nonconvex convergence results typically show first order criticality: GI(xt)→ 0.

10

Motivation Our approach Analysis Numerical experiments References

Notation and Background
Frank Wolfe gaps

Recall I = {1, . . . ,m}. The Frank-Wolfe gap at x ∈ RN is

GI(x) = 〈∇f (x) | x − LMO×i∈I Ci (∇f (x))〉 =
∑
i∈I
〈∇i f (x) | x i − LMOCi (∇i f (x))〉.

A partial Frank-Wolfe gap is given by

(∀J ⊂ I) GJ(x) =
∑
i∈J
〈∇i f (x) | x i − LMOCi (∇i f (x))〉

Fact
(A) If x ∈×i∈I Ci , then (∀J ⊂ I) GJ(x) > 0.

(B) x is a stationary point of (1) if and only if x ∈×i∈I Ci and GI(x) = 0.

⇒ nonconvex convergence results typically show first order criticality: GI(xt)→ 0.

10

Motivation Our approach Analysis Numerical experiments References

Notation and Background
Frank Wolfe gaps

Recall I = {1, . . . ,m}. The Frank-Wolfe gap at x ∈ RN is

GI(x) = 〈∇f (x) | x − LMO×i∈I Ci (∇f (x))〉 =
∑
i∈I
〈∇i f (x) | x i − LMOCi (∇i f (x))〉.

A partial Frank-Wolfe gap is given by

(∀J ⊂ I) GJ(x) =
∑
i∈J
〈∇i f (x) | x i − LMOCi (∇i f (x))〉

Fact
(A) If x ∈×i∈I Ci , then (∀J ⊂ I) GJ(x) > 0.

(B) x is a stationary point of (1) if and only if x ∈×i∈I Ci and GI(x) = 0.

⇒ nonconvex convergence results typically show first order criticality: GI(xt)→ 0.

10

Motivation Our approach Analysis Numerical experiments References

Notation and Background
Frank Wolfe gaps

Recall I = {1, . . . ,m}. The Frank-Wolfe gap at x ∈ RN is

GI(x) = 〈∇f (x) | x − LMO×i∈I Ci (∇f (x))〉 =
∑
i∈I
〈∇i f (x) | x i − LMOCi (∇i f (x))〉.

A partial Frank-Wolfe gap is given by

(∀J ⊂ I) GJ(x) =
∑
i∈J
〈∇i f (x) | x i − LMOCi (∇i f (x))〉

Fact
(A) If x ∈×i∈I Ci , then (∀J ⊂ I) GJ(x) > 0.

(B) x is a stationary point of (1) if and only if x ∈×i∈I Ci and GI(x) = 0.

⇒ nonconvex convergence results typically show first order criticality: GI(xt)→ 0.

11

Motivation Our approach Analysis Numerical experiments References

Notation and Background
Smoothness and short-steps

For Lf > 0, the function f is Lf -smooth on a convex set C if

(∀x, y ∈ C) f (y)− f (x) 6 〈∇f (x) | y − x〉+ Lf
2 ‖y − x‖2.

For BCFW, this means

f (xt+1)− f (xt) 6
∑
i∈It

γ i
t 〈∇i f (xt) | v i

t − x i
t〉︸ ︷︷ ︸

−Gi (xt)

+Lf
2 (γ i

t)2‖v i
t − x i

t‖2.

To tighten the inequality, the stepsize

γ i
t = Argmin

γ∈[0,1]

(
−γGi (xt) + γ2 Lf

2 ‖v
i
t − x i

t‖2
)

= min
{ Gi (xt)

Lf ‖v i
t − x i

t‖2 , 1
}
, (short)

is known as the componentwise short step. Downside: requires upper-estimate of Lf .

11

Motivation Our approach Analysis Numerical experiments References

Notation and Background
Smoothness and short-steps

For Lf > 0, the function f is Lf -smooth on a convex set C if

(∀x, y ∈ C) f (y)− f (x) 6 〈∇f (x) | y − x〉+ Lf
2 ‖y − x‖2.

For BCFW, this means

f (xt+1)− f (xt) 6
∑
i∈It

γ i
t 〈∇i f (xt) | v i

t − x i
t〉︸ ︷︷ ︸

−Gi (xt)

+Lf
2 (γ i

t)2‖v i
t − x i

t‖2.

To tighten the inequality, the stepsize

γ i
t = Argmin

γ∈[0,1]

(
−γGi (xt) + γ2 Lf

2 ‖v
i
t − x i

t‖2
)

= min
{ Gi (xt)

Lf ‖v i
t − x i

t‖2 , 1
}
, (short)

is known as the componentwise short step. Downside: requires upper-estimate of Lf .

11

Motivation Our approach Analysis Numerical experiments References

Notation and Background
Smoothness and short-steps

For Lf > 0, the function f is Lf -smooth on a convex set C if

(∀x, y ∈ C) f (y)− f (x) 6 〈∇f (x) | y − x〉+ Lf
2 ‖y − x‖2.

For BCFW, this means

f (xt+1)− f (xt) 6
∑
i∈It

γ i
t 〈∇i f (xt) | v i

t − x i
t〉︸ ︷︷ ︸

−Gi (xt)

+Lf
2 (γ i

t)2‖v i
t − x i

t‖2.

To tighten the inequality, the stepsize

γ i
t = Argmin

γ∈[0,1]

(
−γGi (xt) + γ2 Lf

2 ‖v
i
t − x i

t‖2
)

= min
{ Gi (xt)

Lf ‖v i
t − x i

t‖2 , 1
}
, (short)

is known as the componentwise short step. Downside: requires upper-estimate of Lf .

11

Motivation Our approach Analysis Numerical experiments References

Notation and Background
Smoothness and short-steps

For Lf > 0, the function f is Lf -smooth on a convex set C if

(∀x, y ∈ C) f (y)− f (x) 6 〈∇f (x) | y − x〉+ Lf
2 ‖y − x‖2.

For BCFW, this means

f (xt+1)− f (xt) 6
∑
i∈It

γ i
t 〈∇i f (xt) | v i

t − x i
t〉︸ ︷︷ ︸

−Gi (xt)

+Lf
2 (γ i

t)2‖v i
t − x i

t‖2.

To tighten the inequality, the stepsize

γ i
t = Argmin

γ∈[0,1]

(
−γGi (xt) + γ2 Lf

2 ‖v
i
t − x i

t‖2
)

= min
{ Gi (xt)

Lf ‖v i
t − x i

t‖2 , 1
}
, (short)

is known as the componentwise short step. Downside: requires upper-estimate of Lf .

12

Motivation Our approach Analysis Numerical experiments References

Adaptive step-size algorithm for convex functions
Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ i
t based on an estimated the smoothness constant M̃.

2. If (2∗) holds between xt and xt+1: done.
3. Else, increase M̃ ← τM̃ by τ > 1 and recompute xt+1 until (2∗)

holds.
Pros: No a-priori knowledge of Lf ; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lf -smooth. Then,

12

Motivation Our approach Analysis Numerical experiments References

Adaptive step-size algorithm for convex functions
Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ i
t based on an estimated the smoothness constant M̃.

2. If (2∗) holds between xt and xt+1: done.
3. Else, increase M̃ ← τM̃ by τ > 1 and recompute xt+1 until (2∗)

holds.
Pros: No a-priori knowledge of Lf ; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lf -smooth. Then,

12

Motivation Our approach Analysis Numerical experiments References

Adaptive step-size algorithm for convex functions
Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ i
t based on an estimated the smoothness constant M̃.

2. If a desired inequality holds between xt and xt+1: done.
3. Else, increase M̃ ← τM̃ by τ > 1 and recompute xt+1 until the desired inequality

holds.
Pros: No a-priori knowledge of Lf ; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lf -smooth. Then,

12

Motivation Our approach Analysis Numerical experiments References

Adaptive step-size algorithm for convex functions
Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ i
t based on an estimated the smoothness constant M̃.

2. If a desired inequality holds between xt and xt+1: done.
3. Else, increase M̃ ← τM̃ by τ > 1 and recompute xt+1 until the desired inequality

holds.
Pros: No a-priori knowledge of Lf ; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lf -smooth. Then,

12

Motivation Our approach Analysis Numerical experiments References

Adaptive step-size algorithm for convex functions
Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ i
t based on an estimated the smoothness constant M̃.

2. If a desired inequality holds between xt and xt+1: done.
3. Else, increase M̃ ← τM̃ by τ > 1 and recompute xt+1 until the desired inequality

holds.
Pros: No a-priori knowledge of Lf ; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lf -smooth. Then,

12

Motivation Our approach Analysis Numerical experiments References

Adaptive step-size algorithm for convex functions
Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ i
t based on an estimated the smoothness constant M̃.

2. If a desired inequality holds between xt and xt+1: done.
3. Else, increase M̃ ← τM̃ by τ > 1 and recompute xt+1 until the desired inequality

holds.
Pros: No a-priori knowledge of Lf ; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lf -smooth. Then,

(∀x, y ∈ RN) f (x)− f (y)− 〈∇f (y) | x − y〉 > ‖∇f (x)−∇f (y)‖2

2Lf
.

12

Motivation Our approach Analysis Numerical experiments References

Adaptive step-size algorithm for convex functions
Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ i
t based on an estimated the smoothness constant M̃.

2. If (2∗) holds between xt and xt+1: done.
3. Else, increase M̃ ← τM̃ by τ > 1 and recompute xt+1 until (2∗)

holds.
Pros: No a-priori knowledge of Lf ; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lf -smooth. Then, for M̃ sufficiently large,

f (xt)− f (xt+1)− 〈∇f (xt+1) | xt − xt+1〉 >
‖∇f (xt)−∇f (xt+1)‖2

2M̃
. (2∗)

13

Motivation Our approach Analysis Numerical experiments References

Progress lemma
Lemma (Progress bound via smoothness and convexity, short-step)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , and assume (?). Let x∗ solve (1),
and set Ht = f (xt)− f (x∗). Then

Ht − Ht+K >


Ht + At − KLf D2

2 , if Ht + At > KLf D2;
(Ht + At)2

2KLf D2 , if Ht + At 6 KLf D2, where

At =
K−1∑
k=1

GIt+k−1 ∩ (It+k ∪ · · · ∪ It+K−1)︸ ︷︷ ︸
Jk

(xt+k) > 0

At describes partial F-W gaps for all re-activated components.

13

Motivation Our approach Analysis Numerical experiments References

Progress lemma
Lemma (Progress bound via smoothness and convexity, short-step)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , and assume (?). Let x∗ solve (1),
and set Ht = f (xt)− f (x∗). Then

Ht − Ht+K >


Ht + At − KLf D2

2 , if Ht + At > KLf D2;
(Ht + At)2

2KLf D2 , if Ht + At 6 KLf D2, where

At =
K−1∑
k=1

GIt+k−1 ∩ (It+k ∪ · · · ∪ It+K−1)︸ ︷︷ ︸
Jk

(xt+k) >
K−1∑
k=1

f (xt+k)− min
x∈×i∈I Ci

x I\Jk =x I\Jk
t+k

f (x) > 0.

At describes partial F-W gaps for all re-activated components.

13

Motivation Our approach Analysis Numerical experiments References

Progress lemma
Lemma (Progress bound via smoothness and convexity, short-step)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , and assume (?). Let x∗ solve (1),
and set Ht = f (xt)− f (x∗). Then

Ht − Ht+K >


Ht + At − KLf D2

2 , if Ht + At > KLf D2;
(Ht + At)2

2KLf D2 , if Ht + At 6 KLf D2, where

At =
K−1∑
k=1

GIt+k−1 ∩ (It+k ∪ · · · ∪ It+K−1)︸ ︷︷ ︸
Jk

(xt+k) >
K−1∑
k=1

f (xt+k)− min
x∈×i∈I Ci

x I\Jk =x I\Jk
t+k

f (x) > 0.

At may explain good behavior in experiments.

13

Motivation Our approach Analysis Numerical experiments References

Progress lemma
Lemma (Progress bound via smoothness and convexity, short-step)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , and assume (?). Let x∗ solve (1),
and set Ht = f (xt)− f (x∗). Then

Ht − Ht+K >


Ht + At − KLf D2

2 , if Ht + At > KLf D2;
(Ht + At)2

2KLf D2 , if Ht + At 6 KLf D2, where

At =
K−1∑
k=1

GIt+k−1 ∩ (It+k ∪ · · · ∪ It+K−1)︸ ︷︷ ︸
Jk

(xt+k) >
K−1∑
k=1

f (xt+k)− min
x∈×i∈I Ci

x I\Jk =x I\Jk
t+k

f (x) > 0.

We don’t know how to leverage Ats for an improved rate!

13

Motivation Our approach Analysis Numerical experiments References

Progress lemma
Lemma (Progress bound via smoothness and convexity, adaptive step size strategy)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , let 0 < η 6 1 < τ and M0 > 0, and
assume (?). Let x∗ solve (1), and set Ht = f (xt)− f (x∗). Then

Ht − Ht+K >


Ht + At − Kmax{ηtM0,τLf }D2

2 , if Ht + At > Kmax{ηtM0, τLf }D2;
(Ht + At)2

2Kmax{ηtM0, τLf }D2 , if Ht + At 6 Kmax{ηtM0, τLf }D2,

At =
K−1∑
k=1

GIt+k−1 ∩ (It+k ∪ · · · ∪ It+K−1)︸ ︷︷ ︸
Jk

(xt+k) >
K−1∑
k=1

f (xt+k)− min
x∈×i∈I Ci

x I\Jk =x I\Jk
t+k

f (x) > 0.

At describes partial F-W gaps for all re-activated components.

14

Motivation Our approach Analysis Numerical experiments References

Convex setting: flexible stepsizes
Theorem
Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let τ > 1 > η and M0 > 0 be approximation parameters, let D be the
diameter of×i∈I Ci , let x0 ∈ RN , let x∗ solve (1), and assume (?). Set
n0 := max{dlog(τLf /(ηM0))/(K log η)e, 0}. Then,

f (xnK)− f (x∗) 6


min

06p6n−1

{
KηpK M0D2

2 − ApK
}

if 1 6 n 6 n0 + 1

2KτLf D2

n − n0 +∑n
p=n0

2ApK
f (xn0)−f (x∗) +

(ApK
f (xn0)−f (x∗)

)2 if n > n0 + 1.

After t iterations, Adaptive-BCFW has evaluated f and ∇f at-most
2 + dlogτ (Lf /η

tM0)e times.

→ After t iterations, matches O(K/t) rate for convex cyclic setting

14

Motivation Our approach Analysis Numerical experiments References

Convex setting: flexible stepsizes
Theorem
Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let τ > 1 > η and M0 > 0 be approximation parameters, let D be the
diameter of×i∈I Ci , let x0 ∈ RN , let x∗ solve (1), and assume (?). Set
n0 := max{dlog(τLf /(ηM0))/(K log η)e, 0}. Then,

f (xnK)− f (x∗) 6


min

06p6n−1

{
KηpK M0D2

2 − ApK
}

if 1 6 n 6 n0 + 1

2KτLf D2

n − n0 +∑n
p=n0

2ApK
f (xn0)−f (x∗) +

(ApK
f (xn0)−f (x∗)

)2 if n > n0 + 1.

After t iterations, Adaptive-BCFW has evaluated f and ∇f at-most
2 + dlogτ (Lf /η

tM0)e times.

→ After t iterations, matches O(K/t) rate for convex cyclic setting

15

Motivation Our approach Analysis Numerical experiments References

Corollary: Parallelized short-step BCFW
Corollary

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , let x∗ solve (1), and assume (?).
Then,

(∀n ∈ N) f (xnK)− f (x∗) 6


KLf D2

2 − A0 if n = 1
2KLf D2

n − 1 +∑n
p=1

2ApK
f (x1)−f (x∗) +

(ApK
f (x1)−f (x∗)

)2 if n > 2.

Furthermore, Short-step BCFW requires one gradient evaluation per iteration.

→ Matches rate and constant for non-block Short-step FW.
→ Easier to parallelize than Adaptive BCFW.

15

Motivation Our approach Analysis Numerical experiments References

Corollary: Parallelized short-step BCFW
Corollary

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , let x∗ solve (1), and assume (?).
Then,

(∀n ∈ N) f (xnK)− f (x∗) 6


KLf D2

2 − A0 if n = 1
2KLf D2

n − 1 +∑n
p=1

2ApK
f (x1)−f (x∗) +

(ApK
f (x1)−f (x∗)

)2 if n > 2.

Furthermore, Short-step BCFW requires one gradient evaluation per iteration.

→ Matches rate and constant for non-block Short-step FW.
→ Easier to parallelize than Adaptive BCFW.

16

Motivation Our approach Analysis Numerical experiments References

Nonconvex convergence
Theorem (Nonconvex convergence)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets with diameter D.
Let ∇f be Lf -Lipschitz continuous on×i∈I Ci , set H0 = f (x0)− inf f (×i∈I Ci).
Suppose that (?) holds. Then, for every n ∈ N, Short-step BCFW guarantees

min
06p6n−1

GI(xpK) 6 1
n

n−1∑
p=0

GI(xpK) 6


2H0−

∑n−1
p=0 ApK

n + KLf D2

2 if n 6 2H0
KLf D2

2D
√

H0KLf
n −

∑n−1
p=0 ApK

n otherwise.

In particular, there exists a subsequence (nk)k∈N such that GI(xnkK)→ 0, and every
accumulation point of (xnkK)k∈N is a stationary point of (1).

→ Reactivated gap terms reappear!
→ After t iterations, minimal F-W gap converges like O(K/

√
t).

16

Motivation Our approach Analysis Numerical experiments References

Nonconvex convergence
Theorem (Nonconvex convergence)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets with diameter D.
Let ∇f be Lf -Lipschitz continuous on×i∈I Ci , set H0 = f (x0)− inf f (×i∈I Ci).
Suppose that (?) holds. Then, for every n ∈ N, Short-step BCFW guarantees

min
06p6n−1

GI(xpK) 6 1
n

n−1∑
p=0

GI(xpK) 6


2H0−

∑n−1
p=0 ApK

n + KLf D2

2 if n 6 2H0
KLf D2

2D
√

H0KLf
n −

∑n−1
p=0 ApK

n otherwise.

In particular, there exists a subsequence (nk)k∈N such that GI(xnkK)→ 0, and every
accumulation point of (xnkK)k∈N is a stationary point of (1).

→ Reactivated gap terms reappear!
→ After t iterations, minimal F-W gap converges like O(K/

√
t).

17

Motivation Our approach Analysis Numerical experiments References

Flexible Block-Coordinate Frank-Wolfe Algorithm

1. Motivation

2. Our approach

3. Analysis

4. Numerical experiments

18

Motivation Our approach Analysis Numerical experiments References

Experiments
Toy intersection problem (convex)

Find a matrix in the intersection of the spectrahedron C1 = {X ∈ Sr×r
+ |Trace(X) = 1}

and the hypercube C2 = [−5, µ]r×r (µ = 1/r).

minimize
x∈C1×C2

1
2‖x

1 − x2‖2

18

Motivation Our approach Analysis Numerical experiments References

Experiments
Toy intersection problem (convex)

Find a matrix in the intersection of the spectrahedron C1 = {X ∈ Sr×r
+ |Trace(X) = 1}

and the hypercube C2 = [−5, µ]r×r (µ = 1/r).

minimize
x∈C1×C2

1
2‖x

1 − x2‖2

→ LMOC1 is far more expensive than LMOC2 .
→ We use Short-step BCFW to compare the following block activations: full, cyclic,

permuted-cyclic, and “q-lazy”:

(∀t ∈ N) It =
{
{1, 2} if t ≡ 0 mod q;
{2} otherwise.

(q-Lazy)

18

Motivation Our approach Analysis Numerical experiments References

Experiments
Toy intersection problem (convex)

minimize
x∈C1×C2

1
2‖x

1−x2‖2

comparing block-activations: full, cyclic, permuted-cyclic, and

(∀t ∈ N) It =
{
{1, 2} if t ≡ 0 mod q;
{1} otherwise.

(q-lazy)

0 2,500 5,000 7,500 10,000

10−2

10−1

100

101

102

Iteration t

f(
x)
−

f(
x∗

)

Full 5-Lazy
Cyclic 10-Lazy
P-Cyclic 20-Lazy

(a) r = 100

0 2,500 5,000 7,500 10,000
10−2

10−1

100

101

102

103

Iteration t

Full 5-Lazy
Cyclic 10-Lazy
P-Cyclic 20-Lazy

(b) r = 300

0 2,500 5,000 7,500 10,000
10−2

10−1

100

101

102

103

Iteration t

Full 5-Lazy
Cyclic 10-Lazy
P-Cyclic 20-Lazy

(c) r = 500

18

Motivation Our approach Analysis Numerical experiments References

Experiments
Toy intersection problem (convex)

minimize
x∈C1×C2

1
2‖x

1−x2‖2

comparing block-activations: full, cyclic, permuted-cyclic, and

(∀t ∈ N) It =
{
{1, 2} if t ≡ 0 mod q;
{1} otherwise.

(q-lazy)

0 2,500 5,000 7,500 10,000

10−2

10−1

100

101

102

Spectr. LMOs

f(
x)
−

f(
x∗

)

Full 5-Lazy
Cyclic 10-Lazy
P-Cyclic 20-Lazy

(d) r = 100

0 2,500 5,000 7,500 10,000
10−2

10−1

100

101

102

103

Spectr. LMOs

Full 5-Lazy
Cyclic 10-Lazy
P-Cyclic 20-Lazy

(e) r = 300

0 2,500 5,000 7,500 10,000
10−2

10−1

100

101

102

103

Spectr. LMOs

Full 5-Lazy
Cyclic 10-Lazy
P-Cyclic 20-Lazy

(f) r = 500

18

Motivation Our approach Analysis Numerical experiments References

Experiments
Toy intersection problem (convex)

minimize
x∈C1×C2

1
2‖x

1−x2‖2

comparing block-activations: full, cyclic, permuted-cyclic, and

(∀t ∈ N) It =
{
{1, 2} if t ≡ 0 mod q;
{1} otherwise.

(q-lazy)

0 20 40 60

10−2

10−1

100

101

Time (sec)

f(
x)
−

f(
x∗

)

Full 5-Lazy
Cyclic 10-Lazy
P-Cyclic 20-Lazy

(g) r = 100

0 50 100 150
10−2

10−1

100

101

102

Time (sec)

Full 5-Lazy
Cyclic 10-Lazy
P-Cyclic 20-Lazy

(h) r = 300

0 100 200 300
10−2

10−1

100

101

102

Time (sec)

Full 5-Lazy
Cyclic 10-Lazy
P-Cyclic 20-Lazy

(i) r = 500

19

Motivation Our approach Analysis Numerical experiments References

Experiments
Toy Difference-of-Convex quadratic problem

Find a 2r × r matrix such that its first r × r submatrix satisfies ‖X‖∞ 6 1, and its
second submatrix satisfies ‖X‖nuc 6 1. To investigate BCFW when the number of
components is large, we set C1 = . . . = Cr = {x ∈ Rr | ‖x‖∞ 6 1} and
Cr+1 = {X ∈ Rr×r | ‖X‖nuc 6 1}. For PSD 2r × r matrices A and B, we seek to solve

minimize
x∈ ×

16i6r+1
Ci

〈
[x]
∣∣ [x]A

〉
−
〈
[x]
∣∣ [x]B

〉
→ For each instance, we verify A− B is indefinite.
→ Problem is nonseparable

19

Motivation Our approach Analysis Numerical experiments References

Experiments
Toy Difference-of-Convex quadratic problem

→ LMOCr+1 is far more expensive than (LMOCi)16i6r .
→ We use Short-step BCFW to compare the following block activations: full, cyclic,

permuted-cyclic, and “(p, q)-lazy”:

(∀t ∈ N) It =
{

I if t ≡ 0 (mod q)
{i1, . . . , ip} ⊂R I \ {r + 1} otherwise.

((p, q)-Lazy)

Full update every q iterations; otherwise, update a random subset of p “cheap”
coordinates in parallel.

19

Motivation Our approach Analysis Numerical experiments References

Experiments
Toy Difference-of-Convex quadratic problem

minimize
x∈ ×

16i6r+1
Ci

〈
[x]
∣∣ [x]A

〉
−
〈
[x]
∣∣ [x]B

〉 comparing full, cyclic, perm.-cyclic, and “(p, q)-lazy”:

It =
{

I if t ≡ 0 (mod q)
{i1, . . . , ip} ⊂R I \ {r + 1} otherwise.

0 2,500 5,000 7,500 10,000
10−1

102

105

108

Iteration (t)

M
in

.
F-

W
ga

p

(2, 20) Full
(10, 10) Cyclic
(r

2 , 5) P-Cyclic
(r, 2)

(j) r = 100

0 2,500 5,000 7,500 10,000

102

105

108

1011

Iteration (t)

(2, 20) Full
(10, 10) Cyclic
(r

2 , 5) P-Cyclic
(r, 2)

(k) r = 300

0 2,500 5,000 7,500 10,000

103

106

109

Iteration (t)

(2, 20) Full
(10, 10) Cyclic
(r

2 , 5) P-Cyclic
(r, 2)

(l) r = 500

19

Motivation Our approach Analysis Numerical experiments References

Experiments
Toy Difference-of-Convex quadratic problem

minimize
x∈ ×

16i6r+1
Ci

〈
[x]
∣∣ [x]A

〉
−
〈
[x]
∣∣ [x]B

〉 comparing full, cyclic, perm.-cyclic, and “(p, q)-lazy”:

It =
{

I if t ≡ 0 (mod q)
{i1, . . . , ip} ⊂R I \ {r + 1} otherwise.

0 2,500 5,000
10−1

102

105

108

Nucl. LMO

M
in

.
F-

W
ga

p

(2, 20) Full
(10, 10) Cyclic
(r

2 , 5) P-Cyclic
(r, 2)

(m) r = 100

0 2,500 5,000

102

105

108

Nucl. LMOs

(2, 20) Full
(10, 10) Cyclic
(r

2 , 5) P-Cyclic
(r, 2)

(n) r = 300

0 2,500 5,000

103

105

107

109

Nucl. LMOs

(2, 20) Full
(10, 10) Cyclic
(r

2 , 5) P-Cyclic
(r, 2)

(o) r = 500

19

Motivation Our approach Analysis Numerical experiments References

Experiments
Toy Difference-of-Convex quadratic problem

minimize
x∈ ×

16i6r+1
Ci

〈
[x]
∣∣ [x]A

〉
−
〈
[x]
∣∣ [x]B

〉 comparing full, cyclic, perm.-cyclic, and “(p, q)-lazy”:

It =
{

I if t ≡ 0 (mod q)
{i1, . . . , ip} ⊂R I \ {r + 1} otherwise.

0 5 10 15 20
10−1

103

107

1011

Time (sec)

M
in

.
F-

W
ga

p

(2, 20) Full
(10, 10) Cyclic
(r

2 , 5) P-Cyclic
(r, 2)

(p) r = 100

0 20 40 60 80 100

102

105

108

1011

Time (sec)

(2, 20) Full
(10, 10) Cyclic
(r

2 , 5) P-Cyclic
(r, 2)

(q) r = 300

0 100 200

103

106

109

1012

Time (sec)

(2, 20) Full
(10, 10) Cyclic
(r

2 , 5) P-Cyclic
(r, 2)

(r) r = 500

20

Motivation Our approach Analysis Numerical experiments References

Conclusion
Draft can be found here:

https://zevwoodstock.github.io/media/publications/block.pdf

Contact: woodstock@zib.de or woodstzc@jmu.edu

21

Motivation Our approach Analysis Numerical experiments References

Thank you for your attention!

22

Motivation Our approach Analysis Numerical experiments References

References
A. Beck, E. Pauwels, and S. Sabach, The cyclic block conditional gradient method for convex
optimization problems
SIAM J. Optim., vol. 25, no. 4, pp. 2024–2049, 2015

C. Combettes and S. Pokutta, Complexity of linear minimization and projection on some sets
Oper. Res. Lett., vol. 49, no. 4, pp. 565–571, 2021

P. L. Combettes and ZW, Signal recovery from inconsistent nonlinear observations
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp 5872—5876, 2022.

P. L. Combettes and ZW, A variational inequality model for the construction of signals from
inconsistent nonlinear equations
SIAM J. Imaging Sci., vol. 15, no. 1, pp. 84–109, 2022

M. Frank and P. Wolfe, An algorithm for quadratic programming
Naval Res. Logist. Quart., vol. 3, iss. 1–2, pp. 95–110, 1956

E. Hazan and H. Luo, Variance-Reduced and Projection-Free Stochastic Optimization
Proc. ICML, vol. 48, pp. 1263–1271, 2016

23

Motivation Our approach Analysis Numerical experiments References

References

C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations
SIAM, Philadelphia, 1995.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, P. Pletscher, Block-Coordinate Frank-Wolfe
Optimization for Structural SVMs
Proc. ICML, vol. 28, pp. 53–61, 2013

A. Osokin, J.-B. Alayrac, I. Lukasewitz, P. Dokania, S. Lacoste-Julien, Minding the Gaps for
Block Frank-Wolfe Optimization of Structured SVMs
Proc. ICML, vol. 48, pp. 593–602, 2016

N. Ottavy, Strong convergence of projection-like methods in Hilbert spaces
J. Optim. Theory Appl., vol. 56, pp. 433–461, 1988

M. Patriksson, Decomposition methods for differentiable optimization problems over Cartesian
product sets
Comput. Optim. Appl., vol. 9, pp. 5–42, 1998

24

Motivation Our approach Analysis Numerical experiments References

References

F. Pedregosa, G. Negiar, A. Askari, and M. Jaggi, Linearly convergent Frank-Wolfe with
backtracking line-search
ICML, pp. 1–10, 2020

S. Pokutta, The Frank-Wolfe Algorithm: a Short Introduction
Jahresber. Dtsch. Math.-Ver., vol. 126, pp. 3—35, 2024

V. E. Shamanskii, A modification of Newton’s method
Ukran. Mat. Zh., vol. 19, pp. 133–138, 1967 (in Russian)

Y.-X. Wang, V. Sadhanala, W. Dai, W. Neiswanger, S. Sra, E. Xing, Parallel and Distributed
Block-Coordinate Frank-Wolfe Algorithms
Proc. ICML, vol. 48, pp. 1548–1557, 2016

ZW and S. Pokutta, Splitting the conditional gradient algorithm
arXiv:2311.05381, 2024

	Motivation
	Our approach
	Analysis
	Numerical experiments
	References

