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Problem setting

Given m nonempty closed convex sets C; C R™ with j € {1,..., m} = | and a smooth
function f: RV — R with N = 3", n;, solve

inimi f . 1
Minimize f(x) (1)
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Applications:

Two families of first-order methods to solve (1): projection methods and
Frank-Wolfe AKA “CG"” methods, which use linear minimization oracles.

projc(x) = Argmin ||x — v||? LMO¢(x) € Argmin (x | v) (2)
veC veC

[Combettes/Pokutta, '21]: For many constraints, C, proj. is more expensive than LMOc.
W—/
(e.g., nuclear norm ball, ¢; ball, probability simplex, Birkhoff polytope, general LP, ...)
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Given m nonempty closed convex sets C; C R™ with j € {1,..., m} = | and a smooth
function f: RV — R with N = 3", n;, solve

inimize f(x). 1
Zinmize, ) .
Applications:
For x € RN with components x = (x!,...,x™) (x; € R™),
LMOc¢, x..xc,(x!, ..., x™) = (LMOg,x", ..., LMO¢,x™) ($$9%)

“Let’s avoid computing so many LMOs per iteration!” (paraphrased)

— [Patriksson, '98], [Lacoste-Julien et al., 2013], [Beck et al., 2015], [Wang et al.,
2016], [Osokin et al., 2016], [Bomze et al., 2024], ...



(Generic) BCFW Algorithm

Known modes of convergence:

1: fort=0,1to ... do
2:  Select Iy C{1,...,m}

3 g+ VIi(xe)

4 for i=1to mdo

5 if i € I; then

6: V{L — LMO;(gQ)

7 i« Step size

8 Xti1 ¢ X+ (v — x})

9 else

10: xhi g xi

11: end if

12:  end for 4
13: end for
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Known modes of convergence:

1: fort=0,1to ... do = [Patriksson, 1998]:

2:  Select Iy C {1,...,m} — Asymptotic convergence if f convex

3 g+ VIi(xe) — Exact and Armijo linesearches fixed across
4: fori=1tomdo all components 7 =7

5. if i € I, then — Full update (/i ={1,..., m})

. , — Deterministic essentially cyclic (3K > 0):

6: v, < LMO;(g})

7: i« Step size le = {ic}, with {ie,... ikt ={1,..., m}
8 Xt < Xp +7i(ve — x}) » [Beck et al., 2015]:

9 else' . — O(m/t) convergence (f convex)
10: Xiiq < X; — open-loop, short-step, and backtracking ~i
11: end if — Deterministic cyclic updates
122 end for ) S ) 4
13 end for Ip = {it}, with {i;, ... ieem} ={1,..., m}
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(Generic) BCFW Algorithm

Known modes of convergence:

1: fort=0,1to ... do = Stochastic variants:

2:  Select Iy C {1,...,m} — O(m/t) primal convergence rate (f convex)
3 g, V(xt) — Uniform singleton selection [Lacoste-Julien
4. fori=1to mdo E‘al-vg(f)l?’] .

' e — Non-uniform singleton selection (based on
> i IG It then ; suboptimality criterion) [Osokin et al., 2016]
6: vy < LMO;(g}) — Uniform parallel selection with fixed
7: ’Y£ + Step size block-sizes |I;| = p [Wang et al., 2016]

8: Xi 1 Xk yl(vi— xi) = [Bomze et al., 2024]:

o: else — Linear convergence (KL condition + - - )
10: x2+1 —xi — IS:hlolrt—Sdtep Chlairl(SISC) procedure: 7y, v}
11: end if — Full updates (I, ={1,...,m})

_ df — Uniform singleton selection (/; = {i:})

12: endfor — Gauss-Southwell “greedy” singleton updates 4
13: end for

(based on suboptimality criterion).
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What if my LMOs have very different costs? What if | only have 4 processor cores?
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Let’s recap. ..

= Singleton updates:
— cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random
= Parallel updates:

— Full (1 = {1,..., m}), or uniformly-random blocks of fixed size |/;| = p

What if my LMOs have very different costs? What if | only have 4 processor cores?

What about. . .
= deterministic parallel updates?
= blocks with different sizes?

= cost-aware methodologies? (e.g., if some LMOs are numerically expensive, and
others are cheap)
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A bit of history

Assumption
There exists a positive integer K such that, for every iteration t,

t+K—1
vi<i<m) ie |J I (*)
n=t

Allows for:
= Deterministic, variable-size, parallel updates
= Already known to converge: Full, cyclic, essentially cyclic, ...
» “Lazy” updates: Over K iterations, update expensive LMO(s) once, and update
cheap LMOQOs multiple times.
(expensive LMO evals) 1

— We can set the ratio of (cheap LMO evals) =% arbitrarily small.
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Our approach
000

A bit of history

There exists a positive integer K such that, for every iteration t,

t+K—1
vi<i<m) ie |J I (*)
n=t
To my knowledge, first appears in [Ottavy, 1988]. VAVAY
Related to lazily updating Hessians in Newton's method [Shamanskii, 1967] $VA
Apparently never considered for F-W algorithms before!? 1967:

Canada
turns 100!
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Goals

Under Assumption (%), establish competitive convergence rates.

What we did:
= f convex: O(K/t) rate (for primal gap) using:
— Short-step i
— An adaptive stepsize scheme 7}

= f nonconvex: O(K/+/t) rate (for F-W optimality gap) using short-step 7}

= Some conjectures and interesting analysis along the way. ..
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Notation and Background
Frank Wolfe gaps

Recall / = {1,..., m}. The Frank-Wolfe gap at x € RV is
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Notation and Background
Frank Wolfe gaps

Recall / = {1,..., m}. The Frank-Wolfe gap at x € RV is

Gi(x) = (VF(x) | x = LMOx_, ¢(VF(x))) = > (V'f(x) | x' = LMOc (V'f(x))).
icl

A partial Frank-Wolfe gap is given by
(VJCl) Gy(x)=> (V'f(x)|x —LMO¢(V'f(x)))
icl

(A) If x € X, i, then (VJ C 1) Gy(x) >0,

(B) x is a stationary point of (1) if and only if x € X._, C; and G(x) = 0.

i€l

= nonconvex convergence results typically show first order criticality: G;(x;) — 0.
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Smoothness and short-steps

For Lf > 0, the function f is Ls-smooth on a convex set C if

(.y € Q) Fly)— F(x) < (VF(x) |y —x) + Ly — x|

For BCFW, this means

i Lf i i i
f(xet1) — f(xt) Z’Yr V! f (xt) | ve — x3) +§(%)2Hw - xtH2'
icly _Gi(xt)

To tighten the inequality, the stepsize

. Le i i2 . Gi(x¢)
= Argmin (—vG,- xt) + V2= ||vi — X ) = min {il., 1}, short
v€[0,1] (. 2 Ivs tl Lellvi — xi[|? ( ) o

is known as the componentwise short step.



Notation and Background

Smoothness and short-steps

For Lf > 0, the function f is Ls-smooth on a convex set C if

(.y € Q) Fly)— F(x) < (VF(x) |y —x) + Ly — x|

For BCFW, this means

P
fxe1) = F(xe) <D (VIF(xe) [ v X't>+§(%)2HV't—X'tH2-
icly _Gi(xt)
To tighten the inequality, the stepsize
. Le i i2 . Gi(xt)
= Argmin (—vG,-(x )+ |vi — x| ) = min {.., 1} ,  (short)
1€l0.) o2 Lellvi = x|

11
is known as the componentwise short step. Downside: requires upper-estimate of Ly.
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Adaptive step-size algorithm for convex functions

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:
1. Update 7! based on an estimated the smoothness constant M.
2. If a desired inequality holds between x; and x:;1: done.
3. Else, increase M + M by 7 > 1 and recompute x;1 until the desired inequality
holds.
Pros: No a-priori knowledge of Lf; sometimes we get larger steps.

Cons: Extra function and/or gradient evaluations.

12
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Adaptive step-size algorithm for convex functions

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:
1. Update 7! based on an estimated the smoothness constant M.
2. If a desired inegualityﬂh/olds between x; and x;y1: done.

3. Else, increase M <— 7M by 7 > 1 and recompute x;41 until the desired inequality
holds.

Pros: No a-priori knowledge of Lf; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lg-smooth. Then,

x) — 2
(vx,y €RM) F(x) - Fy) = (VF(y) | x — y) > LU )QLfo(y)ll _
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Adaptive step-size algorithm for convex functions

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:
1. Update 7! based on an estimated the smoothness constant M.
2. If (2*) holds between x; and x;41: done.

3. Else, increase M <« M by 7 > 1 and recompute x;41 until (2*)
holds.

Pros: No a-priori knowledge of Lf; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lg-smooth. Then, for M sufficiently large,

Xt) — Xt 2
Fxe) = F(xer) = (VF(xes1) | xe = xepn) > V000 = VAl - o
20
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Progress lemma

Lemma (Progress bound via smoothness and convexity, short-step)

Let X, Ci C H be a product of m nonempty compact convex sets, let f be convex
and L¢-smooth, let D be the diameter of X;_, G, and assume (x). Let x* solve (1),
and set Hy = f(x¢) — f(x*). Then

He + Ac — K55 if Hy + Ae > KL¢D?;
Ht - Ht+K 2 (Ht —+ At)z

W’ if Ht aF At < KLsz, where
f

K-1
A=) Cly et N (fegi U+ - U /t+K71)(Xt+k) 20

Ik

A; describes partial F-W gaps for all re-activated components.
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Progress lemma

Lemma (Progress bound via smoothness and convexity, short-step)

Let X, Ci C H be a product of m nonempty compact convex sets, let f be convex
and L¢-smooth, let D be the diameter of X;_, G, and assume (x). Let x* solve (1),
and set Hy = f(x¢) — f(x*). Then

He + Ac — K55 if Hy + Ae > KL¢D?;
Ht - Ht+K 2 (Ht —+ At)z

W’ if Ht aF At KLfD2 where
f

K1 K-1
Ay = E G E f(x min  f(x) >0
£ k-1 O (heyk U Uleyk-1) Xttk) —~ thk) x€><,-le/ G (x) >

- NIy — Nk
Ik X Vk=x, g

At may explain good behavior in experiments.
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Progress lemma

Lemma (Progress bound via smoothness and convexity, short-step)

Let X, Ci C H be a product of m nonempty compact convex sets, let f be convex
and L¢-smooth, let D be the diameter of X;_, G, and assume (x). Let x* solve (1),
and set Hy = f(x¢) — f(x*). Then

He + Ac — K55 if Hy + Ae > KL¢D?;
Ht - Ht+K 2 (Ht —+ At)z

W’ if Ht aF At KLfD2 where
f

K1 K-1
Ay = E G E f(x min  f(x) >0
£ k-1 O (heyk U Uleyk-1) Xttk) —~ thk) x€><,-le/ G (x) >

- NIy — Nk
Ik X Vk=x, g

We don't know how to leverage A;s for an improved rate!
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Progress lemma

Lemma (Progress bound via smoothness and convexity, adaptive step size strategy)

Let X, Ci C H be a product of m nonempty compact convex sets, let f be convex
and Ls-smooth, let D be the diameter of Xicr C,let0<n<1<7and My >0, and
assume (*). Let x* solve (1), and set H; = f(x;) — f(x*). Then

H, + A, — Kma><{7]t/\2”o,'rLf}D27 if H, + A, > Kmax{77t/\//077'Lf}D2;
Ht_ Ht+K 2 (Ht+At)2
2Kmax{ntMy, 7L} D?’

if He + Ar < Kmax{n*Mo, 7L} D?,

K-1
A= ; G/t+k—1 N (e U Ulik1) (x“’k) Z F(xe+k) XEQ‘Q/!} C f(x) =0
—1 y X\
3

A: describes partial F-W gaps for all re-activated components.
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Convex setting: flexible stepsizes

Theorem
Let X, Gi C H be a product of m nonempty compact convex sets, let f be convex
and Lg-smooth, let 7 > 1 > 71 and My > 0 be approximation parameters, let D be the

diameter of X, , C;, let xo € RN let x* solve (1), and assume (x). Set
no = max{[log(7L¢/(nMp))/(K logn)],0}. Then,

: KnPK My D? } .
min 0= A if 1< n<n 1
nggn—l{ ) pK X < no +

F(xni) — F(x*) < 2KTL¢D?
n 2A A 2
n— ng + Zp:no f(Xno)f,;(X*) + (f(xno)p_Kf(x*))

After t iterations, Adaptive-BCFW has evaluated f and Vf at-most
2+ [log, (Lf/nt*Mp)] times.

if n> ng+ 1.
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Convex setting: flexible stepsizes

Theorem
Let X, Gi C H be a product of m nonempty compact convex sets, let f be convex
and Lg-smooth, let 7 > 1 > 71 and My > 0 be approximation parameters, let D be the
diameter of X, , C;, let xo € RN let x* solve (1), and assume (x). Set

no = max{[log(7Ls/(nMp))/(K logn)],0}. Then,
. KnPK My D? - .
og?gln—1 {72 APK} ifl<n<n+1

F(xni) — F(x*) < 2KTL¢D?
n 2A A 2
n— ng + Zp:no f(Xno)f,;(X*) + (f(xno)p_Kf(x*))

After t iterations, Adaptive-BCFW has evaluated f and Vf at-most
2+ [log, (Lf/nt*Mp)] times.

if n> ng+ 1.

— After t iterations, matches O(K//t) rate for convex cyclic setting
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Corollary: Parallelized short-step BCFW

Corollary

Let X, Gi C H be a product of m nonempty compact convex sets, let f be convex
and Lg-smooth, let D be the diameter of X;_, G, let x* solve (1), and assume ().
Then,
2

KL;D — A ifn=1

(VneN) f(xuk)— f(x*) < 2KL¢D?
n 2A0K Apk =
N1+ 2 =1 oo T (f(X1)ff(X*))

Furthermore, Short-step BCFW requires one gradient evaluation per iteration.

if n>2.
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Corollary: Parallelized short-step BCFW

Corollary

Let X, Gi C H be a product of m nonempty compact convex sets, let f be convex
and Lg-smooth, let D be the diameter of X;_, G, let x* solve (1), and assume ().
Then,
KL¢D?
; — A ifn=1
(VneN) f(xuk)— f(x*) < 2KL¢D?
n 2A0K Apk =
N1+ 2 =1 oo T (f(X1)ff(X*))

Furthermore, Short-step BCFW requires one gradient evaluation per iteration.

if n>2.

— Matches rate and constant for non-block Short-step FW.
— Easier to parallelize than Adaptive BCFW.
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Nonconvex convergence

Theorem (Nonconvex convergence)

Let X;,; Ci C H be a product of m nonempty compact convex sets with diameter D.
Let Vf be L¢-Lipschitz continuous on X, C;, set Ho = f(xo) — inf f(X;, Ci).
Suppose that (x) holds. Then, for every n € N, Short-step BCFW guarantees

n—1
2Ho=> ") Aok | KL D? 2H,

. SN if n < 2
min  G( pr E G,(pr) n 2 KL;D
0<psn—1 oD HOKL,c Zp 0 ApK

otherwise.

In particular, there exists a subsequence (ny)ken such that Gj(x, k) — 0, and every
accumulation point of (xp, k)ken is a stationary point of (1).

— Reactivated gap terms reappear!
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Let Vf be L¢-Lipschitz continuous on X, C;, set Ho = f(xo) — inf f(X;, Ci).
Suppose that (x) holds. Then, for every n € N, Short-step BCFW guarantees

n—1
2Ho=> ") Aok | KL D? 2H,

. SN if n < 2
min  G( pr E G,(pr) n 2 KL;D
0<psn—1 oD HOKL,c Zp 0 ApK

otherwise.

In particular, there exists a subsequence (ny)ken such that Gj(x, k) — 0, and every
accumulation point of (xp, k)ken is a stationary point of (1).

— Reactivated gap terms reappear!
— After t iterations, minimal F-W gap converges like O(K/\/t).
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Flexible Block-Coordinate Frank-Wolfe Algorithm

4 « Numerical experiments
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Experiments

Toy intersection problem (convex)
Find a matrix in the intersection of the spectrahedron C; = {X € S7*" | Trace(X) = 1}
and the hypercube G = [—=b, ™" (p=1/r).
1
minimize ~||x! — x?||?
x€CixC 2

18



Numerical experiments
0@00

Experiments

Toy intersection problem (convex)
Find a matrix in the intersection of the spectrahedron C; = {X € S7*" | Trace(X) = 1}
and the hypercube G = [—=b, ™" (p=1/r).

o1
minimize ~||x! — x?||?
xeGxCG 2

— LMOc, is far more expensive than LMOg,.

— We use Short-step BCFW to compare the following block activations: full, cyclic,
permuted-cyclic, and “g-lazy”:

{1,2} if t=0 mod g;

-La
{2} otherwise. (g-Lazy)

(Vt € N) It:{

18



Numerical experiments
0@00

Experiments

Toy intersection problem (convex)

comparing block-activations: full, cyclic, permuted-cyclic, and

T TR T I (1,2} if t= :
minimize =||x"—x<|| (VteN) I = 1,2} if t=0 mod g; (g-lazy)
x€CxC 2 t = ) g-lazy
{1} otherwise.
102 : : : o 103 E : : : =| 103 3 : : : =|
—A— Full  —@—5lazy | —A— Full —@—5-lazy | - | —A—Full  —@—5-lazy ]
. —B— Cyclic —— 10-Lazy | 102 —B— Cyclic —+#— 10-Lazy || 102 E —B— Cyclic —s#— 10-Lazy ||
— 10 —6— P-Cyclic 20-Lazy ; E —6— P-Cyclic 20-Lazy % —6— P-Cyclic 20-Lazy %
=10 - E E
| E| ]
x ] E
T 1p-t . B
10-2 = r ) S r 1
102 ! ! L 10-2 | I |
0 2,500 5,000 7,500 10,000 0 2,500 5,000 7,500 10,000 0 2,500 5,000 7,500 10,000
Iteration t Iteration t Iteration t 18

(a) r =100 (b) r =300 (c) r =500



Numerical experiments
0@00

Experiments

Toy intersection problem (convex)

comparing block-activations: full, cyclic, permuted-cyclic, and

minimize fo x?|? (VteN) | = {1,2} if t=0 mod g (g-lazy)
x€Cx G t = . g-lazy
{1} otherwise.
102 : : : 103 : : : =| 103 : : : =|
—aA— Full —@— 5-Lazy —aA— Full —@— 5-lazy | —A— Full —@—5-lazy |
—B— Cyclic —— 10-Lazy 102 —B— Cyclic —#— 10-Lazy 102 —B— Cyclic —— 10-Lazy
10t —6— P-Cyclic 20-Lazy —6— P-Cyclic 20-Lazy % —6— P-Cyclic 20-Lazy %
10t =

Fx) — F(x")

0 2,500 5,000 7,500 10,000 0 2,500 5,000 7,500 10,000 2,500 5,000 7,500 10,000
Spectr. LMOs Spectr. LMOs Spectr. LMOs 18

(d) r =100 (e) r =300 (f) r =500



Numerical experiments
0@00

Experiments

Toy intersection problem (convex)

comparing block-activations: full, cyclic, permuted-cyclic, and

minimize fo x?|? VieN) | — {1,2} if t=0 mod g; I
x€Cix G (VteN) = . (g-lazy)
{1} otherwise.

10! - . ¥ 107 . - = 10? I T |

% —A— Rl —e—Slazy ] —A—Ful  —@—5lazy |} —a— Rl —@—5lazy ||

—B— Cyclic  —s— 10-Lazy || —B— Cyclic —— 10-Lazy || —B— Cyclic  —— 10-Lazy |

—~ 100 —e— P-Cyclic 20-Lazy i 10t —e— P-Cyclic 20-Lazy H 10t —o— P-Cyclic 20-Lazy {

*>< E E 1

g ] 1 b

! 1 E E

X 107t = 3 E

g \s E 1 ]

e :

1072 £ Bg . ] ]

| | |

0 20 40 60 50 100 150 0 100 200 300
Time (sec) Time (sec) Time (sec) 18
(g) r = 100 (h) r = 300 (i) r = 500



Numerical experiments
0000

Experiments

Toy Difference-of-Convex quadratic problem
Find a 2r x r matrix such that its first r x r submatrix satisfies || X||oo < 1, and its
second submatrix satisfies || X||nuc < 1. To investigate BCFW when the number of
components is large, we set C; = ... = C, = {x € R"|||x]|oo < 1} and
Cry1 ={X € R™" ||| X||nuc < 1}. For PSD 2r x r matrices A and B, we seek to solve
minimize ([x] | [x]A) — ([x] | [x]B)
xc X

G
1<i<r+1

— For each instance, we verify A — B is indefinite.

— Problem is nonseparable

19
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Experiments

Toy Difference-of-Convex quadratic problem

— LMOC

r+1
— We use Short-step BCFW to compare the following block activations: full, cyclic,
permuted-cyclic, and “(p, q)-lazy”:

is far more expensive than (LMO¢,)i<i<,.

/ if t=0 (mod q)

,q)-La
{in,....ip} CrI\{r+1} otherwise. ((p, g)-Lazy)

(Vt € N) lt:{

Full update every q iterations; otherwise, update a random subset of p “cheap”
coordinates in parallel.

19
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m|n|m|ze <[x]

Xe
1<I<r+1

Min. F-W gap

Experiments

Toy Difference-of-Convex quadratic problem

| [x]A) -

| —&— (10, 10) —8— Cyclic

(2,20) —a— Full

—*— (5,5) —e— P-Cyclic

(r,2)

0 2,500

5,000 10,000

7,500
Iteration (t)

(j) r = 100

(<[ [X1B)

101t

/

comparing full, cyclic, perm.-cyclic, and “(p,

q)-lazy™:

if t=0 (mod q)

t — . . .
{in,...,ip} CrRI\{r+1} otherwise.
(2, 20) —a— Full ‘ (2,20)‘ —a F‘u\l
—e— (10, 10) —g— Cyclic - —&— (10,10) —5— Cyclic ||
[ | —*—(5,5) —e— P-Cyclic || —*— (5,5) —e— P-Cyclic
(r,2) (r,2)
10°

3

L e L 10° A A
| | | | | |
0 2,500 5,000 7,500 10,000 0 2,500 5,000 7,500
Iteration (t) Iteration (t)
(k) r = 300 (1) r = 500

10,000
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Experiments

Toy Difference-of-Convex quadratic problem

jminimize ([x] [ [x]A) = ([x] | [X]B)

G
1<i<r+1

Min. F-W gap

108

=
=)
&

=3
9

107t

2,500
Nucl. LMO

(m) r =100

5,000

comparing full, cyclic, perm.-cyclic, and “(p, q)-lazy”:

108

I
(i1, .

if t=0 (mod q)
S ip} CRI\{r+1} otherwise.

(2,20) —a— Full 10 (2,20) —a— Full
—&— (10, 10) —&— Cyclic || —&— (10, 10) —8— Cyclic
—+— (§,5) —6— P-Cyclic —+— (§,5) —6— P-Cyclic
(r,2) 107 [ (r,2) fi
b
m i)
105 KA |
| 103 %\’:‘N\‘—Nt
| J | |
2,500 5,000 2,500 5,000
Nucl. LMOs Nucl. LMOs
(n) r =300 (o) r =500
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Experiments

Toy Difference-of-Convex quadratic problem

comparing full, cyclic, perm.-cyclic, and “(p, q)-lazy”:

jminimize ([x] [ [x]A) = ([x] | [X]B)

1<i<r+1

G

Min. F-W gap

101t

(2,20) —a&— Full
—&— (10, 10) —8— Cyclic
—*— (5,5) —6— P-Cyclic

(r.2)

Time (sec)

(p) r =100

if t=0 (mod q)

/
t — . . .
{in,...,ip} CrRI\{r+1} otherwise.
- - - 1012 - -
101 |- (2,20) —a— Full H (2,20) —a— Full
—— (10, 10) —5— Cyclic —— (10, 10) —8— Cyclic
—*— (5,5) —6— P-Cyclic 100 —#— (%,5) —&— P-Cyclic ||
10° |- (r,2) Ml (r,2)

0 2‘0 4‘0 60 80 100 100 200
Time (sec) Time (sec)
(q) r =300 (r) r =500
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Conclusion

Draft can be found here:

https://zevwoodstock.github.io/media/publications/block.pdf

Contact: woodstock@zib.de or woodstzc@jmu.edu
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Thank you for your attention!
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