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Problem setting
Given m nonempty closed convex sets Ci ⊂ Rni with i ∈ {1, . . . ,m} =: I and a smooth
function f : RN → R with N = ∑

i∈I ni , solve

minimize
x∈C1×...×Cm

f (x). (1)

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .
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function f : RN → R with N = ∑

i∈I ni , solve

minimize
x∈C1×...×Cm

f (x). (1)

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .
Two families of first-order methods to solve (1): projection methods and
Frank-Wolfe AKA “CG” methods, which use linear minimization oracles.

projC (x) = Argmin
v∈C

‖x − v‖2 LMOC (x) ∈ Argmin
v∈C

〈x | v〉 (2)
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f (x). (1)

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .
Two families of first-order methods to solve (1): projection methods and
Frank-Wolfe AKA “CG” methods, which use linear minimization oracles.

projC (x) = Argmin
v∈C

‖x − v‖2 LMOC (x) ∈ Argmin
v∈C

〈x | v〉 (2)

[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, C , projC is more expensive than LMOC .
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . . )
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Problem setting
Given m nonempty closed convex sets Ci ⊂ Rni with i ∈ {1, . . . ,m} =: I and a smooth
function f : RN → R with N = ∑

i∈I ni , solve

minimize
x∈C1×...×Cm

f (x). (1)

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .
For x ∈ RN with components x = (x1, . . . , xm) (x i ∈ Rni ),

LMOC1×...×Cm (x1, . . . , xm) = (LMOC1x1, . . . , LMOCmxm) ($$$)
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Problem setting
Given m nonempty closed convex sets Ci ⊂ Rni with i ∈ {1, . . . ,m} =: I and a smooth
function f : RN → R with N = ∑

i∈I ni , solve

minimize
x∈C1×...×Cm

f (x). (1)

Applications: matrix factorization, SVM training, sequence labeling, splitting, . . .
For x ∈ RN with components x = (x1, . . . , xm) (x i ∈ Rni ),

LMOC1×...×Cm (x1, . . . , xm) = (LMOC1x1, . . . , LMOCmxm) ($$$)

“Let’s avoid computing so many LMOs per iteration!” (paraphrased)

– [Patriksson, ’98], [Lacoste-Julien et al., 2013], [Beck et al., 2015], [Wang et al.,
2016], [Osokin et al., 2016], [Bomze et al., 2024], . . .



4

Motivation Our approach Analysis Numerical experiments References

(Generic) BCFW Algorithm

1: for t = 0, 1 to . . . do
2: Select It ⊂ {1, . . . ,m}
3: g t ← ∇f (xt)
4: for i = 1 to m do
5: if i ∈ It then
6: v i

t ← LMOi (g i
t)

7: γ i
t ← Step size

8: x i
t+1 ← x i

t + γ i
t(v i

t − x i
t)

9: else
10: x i

t+1 ← x i
t

11: end if
12: end for
13: end for

Known modes of convergence:
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t − x i
t)

9: else
10: x i

t+1 ← x i
t

11: end if
12: end for
13: end for

Known modes of convergence:

• [Patriksson, 1998]:
— Asymptotic convergence if f convex
— Exact and Armijo linesearches fixed across

all components γ i
t = γt

— Full update (It = {1, . . . ,m})
— Deterministic essentially cyclic (∃K > 0):

It = {it}, with {it , . . . , it+K} = {1, . . . ,m}
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• [Patriksson, 1998]:
— Asymptotic convergence if f convex
— Exact and Armijo linesearches fixed across

all components γ i
t = γt

— Full update (It = {1, . . . ,m})
— Deterministic essentially cyclic (∃K > 0):

It = {it}, with {it , . . . , it+K} = {1, . . . ,m}

• [Beck et al., 2015]:
— O(m/t) convergence (f convex)
— open-loop, short-step, and backtracking γ i

t
— Deterministic cyclic updates

It = {it}, with {it , . . . , it+m} = {1, . . . ,m}
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• Stochastic variants:
— O(m/t) primal convergence rate (f convex)
— Uniform singleton selection [Lacoste-Julien

et al., 2013]
— Non-uniform singleton selection (based on

suboptimality criterion) [Osokin et al., 2016]
— Uniform parallel selection with fixed

block-sizes |It | = p [Wang et al., 2016]
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Known modes of convergence:

• Stochastic variants:
— O(m/t) primal convergence rate (f convex)
— Uniform singleton selection [Lacoste-Julien

et al., 2013]
— Non-uniform singleton selection (based on

suboptimality criterion) [Osokin et al., 2016]
— Uniform parallel selection with fixed

block-sizes |It | = p [Wang et al., 2016]
• [Bomze et al., 2024]:

— Linear convergence (KL condition + · · · )
— Short-Step Chain (SSC) procedure: γ i

t , v i
t

— Full updates (It = {1, . . . ,m})
— Uniform singleton selection (It = {it})
— Gauss-Southwell “greedy” singleton updates

(based on suboptimality criterion).
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Let’s recap. . .
• Singleton updates:
→ cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random

• Parallel updates:
→ Full (It = {1, . . . ,m}), or uniformly-random blocks of fixed size |It | = p

What if my LMOs have very different costs? What if I only have 4 processor cores?

What about. . .
• deterministic parallel updates?
• blocks with different sizes?
• cost-aware methodologies? (e.g., if some LMOs are numerically expensive, and

others are cheap)
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A bit of history
Assumption [Ottavy, 1988]

There exists a positive integer K such that, for every iteration t,

(∀1 6 i 6 m) i ∈
t+K−1⋃

n=t
In. (?)
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Assumption [Ottavy, 1988]

There exists a positive integer K such that, for every iteration t,

(∀1 6 i 6 m) i ∈
t+K−1⋃

n=t
In. (?)

Allows for:
• Deterministic, variable-size, parallel updates
• Already known to converge: Full, cyclic, essentially cyclic, . . .
• “Lazy” updates: Over K iterations, update expensive LMO(s) once, and update

cheap LMOs multiple times.

→ We can set the ratio of (expensive LMO evals)
(cheap LMO evals) = 1

K arbitrarily small.
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A bit of history
Assumption [Ottavy, 1988]

There exists a positive integer K such that, for every iteration t,

(∀1 6 i 6 m) i ∈
t+K−1⋃

n=t
In. (?)

To my knowledge, first appears in [Ottavy, 1988].
Related to lazily updating Hessians in Newton’s method [Shamanskii, 1967]
Apparently never considered for F-W algorithms before!?
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Goals

Under Assumption (?), establish competitive convergence rates.

What we did:
• f convex: O(K/t) rate (for primal gap) using:

— Short-step γ i
t

— An adaptive stepsize scheme γ i
t

• f nonconvex: O(K/
√

t) rate (for F-W optimality gap) using short-step γ i
t

• Some conjectures and interesting analysis along the way. . .
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Notation and Background
Frank Wolfe gaps

Recall I = {1, . . . ,m}. The Frank-Wolfe gap at x ∈ RN is

GI(x) = 〈∇f (x) | x − LMO×i∈I Ci (∇f (x))〉 =
∑
i∈I
〈∇i f (x) | x i − LMOCi (∇i f (x))〉.

A partial Frank-Wolfe gap is given by

(∀J ⊂ I) GJ(x) =
∑
i∈J
〈∇i f (x) | x i − LMOCi (∇i f (x))〉

Fact
(A) If x ∈×i∈I Ci , then (∀J ⊂ I) GJ(x) > 0.

(B) x is a stationary point of (1) if and only if x ∈×i∈I Ci and GI(x) = 0.

⇒ nonconvex convergence results typically show first order criticality: GI(xt)→ 0.
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Notation and Background
Smoothness and short-steps

For Lf > 0, the function f is Lf -smooth on a convex set C if

(∀x, y ∈ C) f (y)− f (x) 6 〈∇f (x) | y − x〉+ Lf
2 ‖y − x‖2.

For BCFW, this means

f (xt+1)− f (xt) 6
∑
i∈It

γ i
t 〈∇i f (xt) | v i

t − x i
t〉︸ ︷︷ ︸

−Gi (xt )

+Lf
2 (γ i

t)2‖v i
t − x i

t‖2.

To tighten the inequality, the stepsize

γ i
t = Argmin

γ∈[0,1]

(
−γGi (xt) + γ2 Lf

2 ‖v
i
t − x i

t‖2
)

= min
{ Gi (xt)

Lf ‖v i
t − x i

t‖2 , 1
}
, (short)

is known as the componentwise short step. Downside: requires upper-estimate of Lf .
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Adaptive step-size algorithm for convex functions
Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ i
t based on an estimated the smoothness constant M̃.

2. If (2∗) holds between xt and xt+1: done.
3. Else, increase M̃ ← τM̃ by τ > 1 and recompute xt+1 until (2∗)

holds.
Pros: No a-priori knowledge of Lf ; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lf -smooth. Then,
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Fact (Hazan & Luo, 2016)

Let f be convex and Lf -smooth. Then,
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Pros: No a-priori knowledge of Lf ; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lf -smooth. Then,

(∀x, y ∈ RN) f (x)− f (y)− 〈∇f (y) | x − y〉 > ‖∇f (x)−∇f (y)‖2

2Lf
.
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Adaptive step-size algorithm for convex functions
Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ i
t based on an estimated the smoothness constant M̃.

2. If (2∗) holds between xt and xt+1: done.
3. Else, increase M̃ ← τM̃ by τ > 1 and recompute xt+1 until (2∗)

holds.
Pros: No a-priori knowledge of Lf ; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and Lf -smooth. Then, for M̃ sufficiently large,

f (xt)− f (xt+1)− 〈∇f (xt+1) | xt − xt+1〉 >
‖∇f (xt)−∇f (xt+1)‖2

2M̃
. (2∗)
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Progress lemma
Lemma (Progress bound via smoothness and convexity, short-step)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , and assume (?). Let x∗ solve (1),
and set Ht = f (xt)− f (x∗). Then

Ht − Ht+K >


Ht + At − KLf D2

2 , if Ht + At > KLf D2;
(Ht + At)2

2KLf D2 , if Ht + At 6 KLf D2, where

At =
K−1∑
k=1

GIt+k−1 ∩ (It+k ∪ · · · ∪ It+K−1)︸ ︷︷ ︸
Jk

(xt+k) > 0

At describes partial F-W gaps for all re-activated components.



13

Motivation Our approach Analysis Numerical experiments References

Progress lemma
Lemma (Progress bound via smoothness and convexity, short-step)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , and assume (?). Let x∗ solve (1),
and set Ht = f (xt)− f (x∗). Then

Ht − Ht+K >


Ht + At − KLf D2

2 , if Ht + At > KLf D2;
(Ht + At)2

2KLf D2 , if Ht + At 6 KLf D2, where

At =
K−1∑
k=1

GIt+k−1 ∩ (It+k ∪ · · · ∪ It+K−1)︸ ︷︷ ︸
Jk

(xt+k) >
K−1∑
k=1

f (xt+k)− min
x∈×i∈I Ci

x I\Jk =x I\Jk
t+k

f (x) > 0.

At describes partial F-W gaps for all re-activated components.



13

Motivation Our approach Analysis Numerical experiments References

Progress lemma
Lemma (Progress bound via smoothness and convexity, short-step)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , and assume (?). Let x∗ solve (1),
and set Ht = f (xt)− f (x∗). Then

Ht − Ht+K >


Ht + At − KLf D2

2 , if Ht + At > KLf D2;
(Ht + At)2

2KLf D2 , if Ht + At 6 KLf D2, where

At =
K−1∑
k=1

GIt+k−1 ∩ (It+k ∪ · · · ∪ It+K−1)︸ ︷︷ ︸
Jk

(xt+k) >
K−1∑
k=1

f (xt+k)− min
x∈×i∈I Ci

x I\Jk =x I\Jk
t+k

f (x) > 0.

At may explain good behavior in experiments.
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We don’t know how to leverage Ats for an improved rate!
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Progress lemma
Lemma (Progress bound via smoothness and convexity, adaptive step size strategy)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , let 0 < η 6 1 < τ and M0 > 0, and
assume (?). Let x∗ solve (1), and set Ht = f (xt)− f (x∗). Then

Ht − Ht+K >


Ht + At − Kmax{ηtM0,τLf }D2

2 , if Ht + At > Kmax{ηtM0, τLf }D2;
(Ht + At)2

2Kmax{ηtM0, τLf }D2 , if Ht + At 6 Kmax{ηtM0, τLf }D2,

At =
K−1∑
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Convex setting: flexible stepsizes
Theorem
Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let τ > 1 > η and M0 > 0 be approximation parameters, let D be the
diameter of×i∈I Ci , let x0 ∈ RN , let x∗ solve (1), and assume (?). Set
n0 := max{dlog(τLf /(ηM0))/(K log η)e, 0}. Then,

f (xnK )− f (x∗) 6


min

06p6n−1

{
KηpK M0D2

2 − ApK
}

if 1 6 n 6 n0 + 1

2KτLf D2

n − n0 +∑n
p=n0

2ApK
f (xn0 )−f (x∗) +

( ApK
f (xn0 )−f (x∗)

)2 if n > n0 + 1.

After t iterations, Adaptive-BCFW has evaluated f and ∇f at-most
2 + dlogτ (Lf /η

tM0)e times.

→ After t iterations, matches O(K/t) rate for convex cyclic setting
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Corollary: Parallelized short-step BCFW
Corollary

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets, let f be convex
and Lf -smooth, let D be the diameter of×i∈I Ci , let x∗ solve (1), and assume (?).
Then,

(∀n ∈ N) f (xnK )− f (x∗) 6


KLf D2

2 − A0 if n = 1
2KLf D2

n − 1 +∑n
p=1

2ApK
f (x1)−f (x∗) +

( ApK
f (x1)−f (x∗)

)2 if n > 2.

Furthermore, Short-step BCFW requires one gradient evaluation per iteration.

→ Matches rate and constant for non-block Short-step FW.
→ Easier to parallelize than Adaptive BCFW.
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Nonconvex convergence
Theorem (Nonconvex convergence)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets with diameter D.
Let ∇f be Lf -Lipschitz continuous on×i∈I Ci , set H0 = f (x0)− inf f (×i∈I Ci ).
Suppose that (?) holds. Then, for every n ∈ N, Short-step BCFW guarantees

min
06p6n−1

GI(xpK ) 6 1
n

n−1∑
p=0

GI(xpK ) 6


2H0−

∑n−1
p=0 ApK

n + KLf D2

2 if n 6 2H0
KLf D2

2D
√

H0KLf
n −

∑n−1
p=0 ApK

n otherwise.

In particular, there exists a subsequence (nk)k∈N such that GI(xnkK )→ 0, and every
accumulation point of (xnkK )k∈N is a stationary point of (1).

→ Reactivated gap terms reappear!
→ After t iterations, minimal F-W gap converges like O(K/

√
t).



16

Motivation Our approach Analysis Numerical experiments References

Nonconvex convergence
Theorem (Nonconvex convergence)

Let×i∈I Ci ⊂H be a product of m nonempty compact convex sets with diameter D.
Let ∇f be Lf -Lipschitz continuous on×i∈I Ci , set H0 = f (x0)− inf f (×i∈I Ci ).
Suppose that (?) holds. Then, for every n ∈ N, Short-step BCFW guarantees

min
06p6n−1

GI(xpK ) 6 1
n

n−1∑
p=0

GI(xpK ) 6


2H0−

∑n−1
p=0 ApK

n + KLf D2

2 if n 6 2H0
KLf D2

2D
√

H0KLf
n −

∑n−1
p=0 ApK

n otherwise.

In particular, there exists a subsequence (nk)k∈N such that GI(xnkK )→ 0, and every
accumulation point of (xnkK )k∈N is a stationary point of (1).

→ Reactivated gap terms reappear!
→ After t iterations, minimal F-W gap converges like O(K/

√
t).



17

Motivation Our approach Analysis Numerical experiments References

Flexible Block-Coordinate Frank-Wolfe Algorithm

1. Motivation

2. Our approach

3. Analysis

4. Numerical experiments
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Experiments
Toy intersection problem (convex)

Find a matrix in the intersection of the spectrahedron C1 = {X ∈ Sr×r
+ |Trace(X ) = 1}

and the hypercube C2 = [−5, µ]r×r (µ = 1/r).

minimize
x∈C1×C2

1
2‖x

1 − x2‖2
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Experiments
Toy intersection problem (convex)

Find a matrix in the intersection of the spectrahedron C1 = {X ∈ Sr×r
+ |Trace(X ) = 1}

and the hypercube C2 = [−5, µ]r×r (µ = 1/r).

minimize
x∈C1×C2

1
2‖x

1 − x2‖2

→ LMOC1 is far more expensive than LMOC2 .
→ We use Short-step BCFW to compare the following block activations: full, cyclic,

permuted-cyclic, and “q-lazy”:

(∀t ∈ N) It =
{
{1, 2} if t ≡ 0 mod q;
{2} otherwise.

(q-Lazy)
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Experiments
Toy intersection problem (convex)

minimize
x∈C1×C2

1
2‖x

1−x2‖2

comparing block-activations: full, cyclic, permuted-cyclic, and

(∀t ∈ N) It =
{
{1, 2} if t ≡ 0 mod q;
{1} otherwise.

(q-lazy)
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Experiments
Toy Difference-of-Convex quadratic problem

Find a 2r × r matrix such that its first r × r submatrix satisfies ‖X‖∞ 6 1, and its
second submatrix satisfies ‖X‖nuc 6 1. To investigate BCFW when the number of
components is large, we set C1 = . . . = Cr = {x ∈ Rr | ‖x‖∞ 6 1} and
Cr+1 = {X ∈ Rr×r | ‖X‖nuc 6 1}. For PSD 2r × r matrices A and B, we seek to solve

minimize
x∈ ×

16i6r+1
Ci

〈
[x ]
∣∣ [x ]A

〉
−
〈
[x ]
∣∣ [x ]B

〉
→ For each instance, we verify A− B is indefinite.
→ Problem is nonseparable
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Experiments
Toy Difference-of-Convex quadratic problem

→ LMOCr+1 is far more expensive than (LMOCi )16i6r .
→ We use Short-step BCFW to compare the following block activations: full, cyclic,

permuted-cyclic, and “(p, q)-lazy”:

(∀t ∈ N) It =
{

I if t ≡ 0 (mod q)
{i1, . . . , ip} ⊂R I \ {r + 1} otherwise.

((p, q)-Lazy)

Full update every q iterations; otherwise, update a random subset of p “cheap”
coordinates in parallel.
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Experiments
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Conclusion
Draft can be found here:

https://zevwoodstock.github.io/media/publications/block.pdf

Contact: woodstock@zib.de or woodstzc@jmu.edu
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Thank you for your attention!
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