	Our approach			
5	000	0000000	0000	0000

Breaking the cycle: Flexible block-iterative analysis for the Frank-Wolfe algorithm

ISMP 2024, Montréal, QC

Zev Woodstock*, Gábor Braun, and Sebastian Pokutta

Zuse Institute Berlin (ZIB) & Technische Universität Berlin Interactive Optimization and Learning (IOL) Lab

July 2024

*- also James Madison University starting Aug. 2024

Our approach Analysis Numerical experiments OCO Flexible Block-Coordinate Frank-Wolfe Algorithm

1. Motivation

Motivation

2. Our approach

3. Analysis

4. Numerical experiments

Motivation	Our approach			
0000	000	0000000	0000	0000

Given *m* nonempty closed convex sets $C_i \subset \mathbb{R}^{n_i}$ with $i \in \{1, \ldots, m\} =: I$ and a smooth function $f : \mathbb{R}^N \to \mathbb{R}$ with $N = \sum_{i \in I} n_i$, solve

$$\min_{\mathbf{x}\in C_1\times\ldots\times C_m} f(\mathbf{x}). \tag{1}$$

Applications: matrix factorization, SVM training, sequence labeling, splitting, ...

Motivation				
0000	000	0000000	0000	0000

Given *m* nonempty closed convex sets $C_i \subset \mathbb{R}^{n_i}$ with $i \in \{1, \ldots, m\} =: I$ and a smooth function $f : \mathbb{R}^N \to \mathbb{R}$ with $N = \sum_{i \in I} n_i$, solve

$$\min_{\boldsymbol{x}\in C_1\times\ldots\times C_m} f(\boldsymbol{x}). \tag{1}$$

Applications: matrix factorization, SVM training, sequence labeling, splitting, ...

Two families of first-order methods to solve (1): projection methods and Frank-Wolfe AKA "CG" methods, which use linear minimization oracles.

$$\operatorname{proj}_{C}(\boldsymbol{x}) = \operatorname{Argmin}_{\boldsymbol{\nu} \in C} \|\boldsymbol{x} - \boldsymbol{\nu}\|^{2} \qquad \operatorname{LMO}_{C}(\boldsymbol{x}) \in \operatorname{Argmin}_{\boldsymbol{\nu} \in C} \langle \boldsymbol{x} \mid \boldsymbol{\nu} \rangle \tag{2}$$

Motivation				
0000	000	0000000	0000	0000

Given *m* nonempty closed convex sets $C_i \subset \mathbb{R}^{n_i}$ with $i \in \{1, \ldots, m\} =: I$ and a smooth function $f : \mathbb{R}^N \to \mathbb{R}$ with $N = \sum_{i \in I} n_i$, solve

$$\min_{\boldsymbol{x}\in C_1\times\ldots\times C_m} f(\boldsymbol{x}). \tag{1}$$

Applications: matrix factorization, SVM training, sequence labeling, splitting, ...

Two families of first-order methods to solve (1): projection methods and Frank-Wolfe AKA "CG" methods, which use linear minimization oracles.

$$\operatorname{proj}_{C}(\boldsymbol{x}) = \operatorname{Argmin}_{\boldsymbol{\nu} \in C} \|\boldsymbol{x} - \boldsymbol{\nu}\|^{2} \qquad \operatorname{LMO}_{C}(\boldsymbol{x}) \in \operatorname{Argmin}_{\boldsymbol{\nu} \in C} \langle \boldsymbol{x} \mid \boldsymbol{\nu} \rangle \tag{2}$$

[Combettes/Pokutta, '21]: For many constraints, C, proj_C is more expensive than LMO_C. (e.g., nuclear norm ball, ℓ_1 ball, probability simplex, Birkhoff polytope, general LP, ...)

Motivation				
0000	000	0000000	0000	0000

Given *m* nonempty closed convex sets $C_i \subset \mathbb{R}^{n_i}$ with $i \in \{1, \ldots, m\} =: I$ and a smooth function $f : \mathbb{R}^N \to \mathbb{R}$ with $N = \sum_{i \in I} n_i$, solve

$$\min_{\boldsymbol{x}\in C_1\times\ldots\times C_m} f(\boldsymbol{x}). \tag{1}$$

Applications: matrix factorization, SVM training, sequence labeling, splitting, ...

For $\boldsymbol{x} \in \mathbb{R}^N$ with components $\boldsymbol{x} = (\boldsymbol{x}^1, \dots, \boldsymbol{x}^m)$ $(\boldsymbol{x}_i \in \mathbb{R}^{n_i})$,

$$\mathsf{LMO}_{C_1 \times \ldots \times C_m}(\mathbf{x}^1, \ldots, \mathbf{x}^m) = (\mathsf{LMO}_{C_1}\mathbf{x}^1, \ldots, \mathsf{LMO}_{C_m}\mathbf{x}^m) \tag{$$$}$$

Motivation				
0000	000	0000000	0000	0000

Given *m* nonempty closed convex sets $C_i \subset \mathbb{R}^{n_i}$ with $i \in \{1, \ldots, m\} =: I$ and a smooth function $f : \mathbb{R}^N \to \mathbb{R}$ with $N = \sum_{i \in I} n_i$, solve

$$\min_{\boldsymbol{x}\in C_1\times\ldots\times C_m} f(\boldsymbol{x}). \tag{1}$$

Applications: matrix factorization, SVM training, sequence labeling, splitting, ...

For $\pmb{x} \in \mathbb{R}^N$ with components $\pmb{x} = (\pmb{x}^1, \dots, \pmb{x}^m)$ $(\pmb{x}_i \in \mathbb{R}^{n_i})$,

$$\mathsf{LMO}_{C_1 \times \ldots \times C_m}(\mathbf{x}^1, \ldots, \mathbf{x}^m) = (\mathsf{LMO}_{C_1}\mathbf{x}^1, \ldots, \mathsf{LMO}_{C_m}\mathbf{x}^m) \tag{$$$}$$

"Let's avoid computing so many LMOs per iteration!" (paraphrased)

- [Patriksson, '98], [Lacoste-Julien et al., 2013], [Beck et al., 2015], [Wang et al., 2016], [Osokin et al., 2016], [Bomze et al., 2024], ...

Motivation	Our approach			
0000	000	0000000	0000	0000

Known modes of convergence:

- 1: for t = 0, 1 to ... do
- 2: Select $I_t \subset \{1, \ldots, m\}$
- 3: $\boldsymbol{g}_t \leftarrow \nabla f(\boldsymbol{x}_t)$
- 4: for i = 1 to m do
- 5: **if** $i \in I_t$ **then**
- 6: $\boldsymbol{v}_t^i \leftarrow \mathsf{LMO}_i(\boldsymbol{g}_t^i)$
- 7: $\gamma_t^i \leftarrow \text{Step size}$
- 8: $\mathbf{x}_{t+1}^{i} \leftarrow \mathbf{x}_{t}^{i} + \gamma_{t}^{i} (\mathbf{v}_{t}^{i} \mathbf{x}_{t}^{i})$
- 9: else
- 10: $\boldsymbol{x}_{t+1}^i \leftarrow \boldsymbol{x}_t^i$
- 11: end if
- 12: end for
- 13: end for

Known modes of convergence:

- 1: for t = 0, 1 to ... do
- 2: Select $I_t \subset \{1, \ldots, m\}$
- 3: $\boldsymbol{g}_t \leftarrow \nabla f(\boldsymbol{x}_t)$
- 4: for i = 1 to m do
- 5: **if** $i \in I_t$ **then**
- 6: $\boldsymbol{v}_t^i \leftarrow \mathsf{LMO}_i(\boldsymbol{g}_t^i)$
- 7: $\gamma_t^i \leftarrow \text{Step size}$
- 8: $\mathbf{x}_{t+1}^{i} \leftarrow \mathbf{x}_{t}^{i} + \gamma_{t}^{i} (\mathbf{v}_{t}^{i} \mathbf{x}_{t}^{i})$
- 9: **else**
- 10: $\boldsymbol{x}_{t+1}^i \leftarrow \boldsymbol{x}_t^i$
- 11: end if
- 12: end for
- 13: end for

- [Patriksson, 1998]:
 - Asymptotic convergence if *f* convex
 - Exact and Armijo linesearches fixed across all components $\gamma_t^i = \gamma_t$
 - Full update $(I_t = \{1, \ldots, m\})$
 - Deterministic essentially cyclic ($\exists K > 0$):

$$I_t = \{\mathfrak{i}_t\}$$
, with $\{\mathfrak{i}_t, \dots, \mathfrak{i}_{t+\mathcal{K}}\} = \{1, \dots, m\}$

Known modes of convergence:

- 1: for t = 0, 1 to ... do
- 2: Select $I_t \subset \{1, \ldots, m\}$
- 3: $\boldsymbol{g}_t \leftarrow \nabla f(\boldsymbol{x}_t)$
- 4: for i = 1 to m do
- 5: **if** $i \in I_t$ **then**
- 6: $\boldsymbol{v}_t^i \leftarrow \mathsf{LMO}_i(\boldsymbol{g}_t^i)$
- 7: $\gamma_t^i \leftarrow \text{Step size}$
- 8: $\mathbf{x}_{t+1}^{i} \leftarrow \mathbf{x}_{t}^{i} + \gamma_{t}^{i} (\mathbf{v}_{t}^{i} \mathbf{x}_{t}^{i})$
- 9: **else**
- 10: $\boldsymbol{x}_{t+1}^i \leftarrow \boldsymbol{x}_t^i$
- 11: end if
- 12: **end for**
- 13: end for

- [Patriksson, 1998]:
 - Asymptotic convergence if f convex
 - Exact and Armijo linesearches fixed across all components $\gamma_t^i = \gamma_t$
 - Full update $(I_t = \{1, \ldots, m\})$
 - Deterministic essentially cyclic ($\exists K > 0$):

 $I_t = \{\mathfrak{i}_t\}$, with $\{\mathfrak{i}_t, \dots, \mathfrak{i}_{t+K}\} = \{1, \dots, m\}$

- [Beck et al., 2015]:
 - $\mathcal{O}(m/t)$ convergence (f convex)
 - open-loop, short-step, and backtracking γ_t^i
 - Deterministic cyclic updates

 $I_t = \{\mathfrak{i}_t\}$, with $\{\mathfrak{i}_t, \dots, \mathfrak{i}_{t+m}\} = \{1, \dots, m\}$

Known modes of convergence:

- 1: for t = 0, 1 to ... do
- 2: Select $I_t \subset \{1, \ldots, m\}$
- 3: $\boldsymbol{g}_t \leftarrow \nabla f(\boldsymbol{x}_t)$
- 4: for i = 1 to m do
- 5: **if** $i \in I_t$ **then**
- 6: $\boldsymbol{v}_t^i \leftarrow \mathsf{LMO}_i(\boldsymbol{g}_t^i)$
- 7: $\gamma_t^i \leftarrow \text{Step size}$
- 8: $\mathbf{x}_{t+1}^{i} \leftarrow \mathbf{x}_{t}^{i} + \gamma_{t}^{i} (\mathbf{v}_{t}^{i} \mathbf{x}_{t}^{i})$
- 9: **else**
- 10: $\boldsymbol{x}_{t+1}^i \leftarrow \boldsymbol{x}_t^i$
- 11: end if
- 12: end for
- 13: end for

- Stochastic variants:
 - $\mathcal{O}(m/t)$ primal convergence rate (f convex)
 - Uniform singleton selection [Lacoste-Julien et al., 2013]
 - Non-uniform singleton selection (based on suboptimality criterion) [Osokin et al., 2016]
 - Uniform parallel selection with fixed block-sizes $|I_t| = p$ [Wang et al., 2016]

Known modes of convergence:

- 1: for t = 0, 1 to ... do
- 2: Select $I_t \subset \{1, \ldots, m\}$
- 3: $\boldsymbol{g}_t \leftarrow
 abla f(\boldsymbol{x}_t)$
- 4: for i = 1 to m do
- 5: **if** $i \in I_t$ **then**
- 6: $\boldsymbol{v}_t^i \leftarrow \mathsf{LMO}_i(\boldsymbol{g}_t^i)$
- 7: $\gamma_t^i \leftarrow \text{Step size}$
- 8: $\mathbf{x}_{t+1}^{i} \leftarrow \mathbf{x}_{t}^{i} + \gamma_{t}^{i} (\mathbf{v}_{t}^{i} \mathbf{x}_{t}^{i})$
- 9: **else**
- 10: $\boldsymbol{x}_{t+1}^i \leftarrow \boldsymbol{x}_t^i$
- 11: end if
- 12: end for
- 13: end for

- Stochastic variants:
 - $\mathcal{O}(m/t)$ primal convergence rate (f convex)
 - Uniform singleton selection [Lacoste-Julien et al., 2013]
 - Non-uniform singleton selection (based on suboptimality criterion) [Osokin et al., 2016]
 - Uniform parallel selection with fixed block-sizes $|I_t| = p$ [Wang et al., 2016]
- [Bomze et al., 2024]:
 - Linear convergence (KL condition $+ \cdots$)
 - Short-Step Chain (SSC) procedure: γ_t^i , \mathbf{v}_t^i
 - Full updates $(I_t = \{1, \ldots, m\})$
 - Uniform singleton selection $(I_t = \{i_t\})$
 - Gauss-Southwell "greedy" singleton updates (based on suboptimality criterion).

Motivation	Our approach		
0000			

• Singleton updates:

 \rightarrow cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random

Parallel updates:

 \rightarrow Full ($I_t = \{1, \dots, m\}$), or uniformly-random blocks of fixed size $|I_t| = p$

What if my LMOs have very different costs? What if I only have 4 processor cores?

Motivation	Our approach		
0000			

Singleton updates:

 \rightarrow cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random

Parallel updates:

ightarrow Full ($I_t = \{1, \ldots, m\}$), or uniformly-random blocks of fixed size $|I_t| = p$

What if my LMOs have very different costs? What if I only have 4 processor cores?

What about...

deterministic parallel updates?

Motivation	Our approach		
0000			

Singleton updates:

 \rightarrow cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random

Parallel updates:

ightarrow Full ($I_t = \{1, \ldots, m\}$), or uniformly-random blocks of fixed size $|I_t| = p$

What if my LMOs have very different costs? What if I only have 4 processor cores?

What about...

- deterministic parallel updates?
- blocks with different sizes?

Motivation	Our approach		
0000			

Singleton updates:

 \rightarrow cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random

Parallel updates:

 \rightarrow Full ($I_t = \{1, \dots, m\}$), or uniformly-random blocks of fixed size $|I_t| = p$

What if my LMOs have very different costs? What if I only have 4 processor cores?

What about...

- deterministic parallel updates?
- blocks with different sizes?
- cost-aware methodologies? (e.g., if some LMOs are numerically expensive, and others are cheap)

Motivation Our approach Our

1. Motivation

2. Our approach

3. Analysis

4. Numerical experiments

Our approach		
000		

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leq i \leq m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

Our approach		
000		

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leq i \leq m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

Allows for:

• Deterministic, variable-size, parallel updates

Our approach		
000		

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leq i \leq m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

Allows for:

- Deterministic, variable-size, parallel updates
- Already known to converge: Full, cyclic, essentially cyclic, ...

Our approach		
000		

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leq i \leq m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

Allows for:

- Deterministic, variable-size, parallel updates
- Already known to converge: Full, cyclic, essentially cyclic, ...
- **"Lazy" updates**: Over *K* iterations, update expensive LMO(s) once, and update cheap LMOs multiple times.

Our approach		
000		

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leq i \leq m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

7

Allows for:

- Deterministic, variable-size, parallel updates
- Already known to converge: Full, cyclic, essentially cyclic, ...
- **"Lazy" updates**: Over *K* iterations, update expensive LMO(s) once, and update cheap LMOs multiple times.

$$\rightarrow$$
 We can set the ratio of $\frac{(\text{expensive LMO evals})}{(\text{cheap LMO evals})} = \frac{1}{K}$ arbitrarily small.

Our approach		
000		

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leq i \leq m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

To my knowledge, first appears in [Ottavy, 1988].

Our approach		
000		

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*)

To my knowledge, first appears in [Ottavy, 1988].

Related to lazily updating Hessians in Newton's method [Shamanskii, 1967]

1967: Canada

7

turns 100!

Our approach		
000		

Assumption

There exists a positive integer K such that, for every iteration t,

$$(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_n.$$
 (*

To my knowledge, first appears in [Ottavy, 1988].

Related to lazily updating Hessians in Newton's method [Shamanskii, 1967]

Apparently never considered for F-W algorithms before !?

1967: Canada

turns 100!

Our approach 00●		

Goals

Under Assumption (\star) , establish competitive convergence rates.

What we did:

- f convex: $\mathcal{O}(K/t)$ rate (for primal gap) using:
 - Short-step γ_t^i
 - An adaptive stepsize scheme γ_t^i
- f nonconvex: $\mathcal{O}(K/\sqrt{t})$ rate (for F-W optimality gap) using short-step γ_t^i
- Some conjectures and interesting analysis along the way...

1. Motivation

2. Our approach

3. Analysis

4. Numerical experiments

Motivation 0000	Our approach 000	Analysis ○●○○○○○○	Numerical experiments	References 0000
	Notation and	Background		
Recall /	Frank vvolte gaps $= \{1, \ldots, m\}$. The Fr	ank-Wolfe gap at x	$\in \mathbb{R}^N$ is	

 $G_{I}(\mathbf{x}) = \langle \nabla f(\mathbf{x}) \mid \mathbf{x} - \mathsf{LMO}_{\times_{i \in I} C_{i}}(\nabla f(\mathbf{x})) \rangle$

0000	000	0000000	0000	0000
	Notation and	Background		

Frank Wolfe gaps

Recall $I = \{1, \ldots, m\}$. The **Frank-Wolfe gap** at $x \in \mathbb{R}^N$ is

$$G_{I}(\mathbf{x}) = \langle \nabla f(\mathbf{x}) \mid \mathbf{x} - \mathsf{LMO}_{\times_{i \in I} C_{i}}(\nabla f(\mathbf{x})) \rangle = \sum_{i \in I} \langle \nabla^{i} f(\mathbf{x}) \mid \mathbf{x}^{i} - \mathsf{LMO}_{C_{i}}(\nabla^{i} f(\mathbf{x})) \rangle.$$

Motivation	Our approach	Analysis	Numerical experiments	References
0000	000	0●000000	0000	
	Notation and	Background		

Frank Wolfe gaps

Recall $I = \{1, \ldots, m\}$. The **Frank-Wolfe gap** at $x \in \mathbb{R}^N$ is

$$G_{I}(\mathbf{x}) = \langle \nabla f(\mathbf{x}) \mid \mathbf{x} - \mathsf{LMO}_{\times_{i \in I} C_{i}}(\nabla f(\mathbf{x})) \rangle = \sum_{i \in I} \langle \nabla^{i} f(\mathbf{x}) \mid \mathbf{x}^{i} - \mathsf{LMO}_{C_{i}}(\nabla^{i} f(\mathbf{x})) \rangle.$$

A partial Frank-Wolfe gap is given by

$$(\forall J \subset I) \quad G_J(\mathbf{x}) = \sum_{i \in J} \langle \nabla^i f(\mathbf{x}) \mid \mathbf{x}^i - \mathsf{LMO}_{C_i}(\nabla^i f(\mathbf{x})) \rangle$$

Notation and	Background	
	0000000	
	Analysis	

Frank Wolfe gaps

Recall $I = \{1, \ldots, m\}$. The **Frank-Wolfe gap** at $x \in \mathbb{R}^N$ is

$$G_{I}(\boldsymbol{x}) = \langle \nabla f(\boldsymbol{x}) \mid \boldsymbol{x} - \mathsf{LMO}_{\times_{i \in I} C_{i}}(\nabla f(\boldsymbol{x})) \rangle = \sum_{i \in I} \langle \nabla^{i} f(\boldsymbol{x}) \mid \boldsymbol{x}^{i} - \mathsf{LMO}_{C_{i}}(\nabla^{i} f(\boldsymbol{x})) \rangle.$$

A partial Frank-Wolfe gap is given by

$$(\forall J \subset I) \quad G_J(\mathbf{x}) = \sum_{i \in J} \langle \nabla^i f(\mathbf{x}) \mid \mathbf{x}^i - \mathsf{LMO}_{C_i}(\nabla^i f(\mathbf{x})) \rangle$$

Fact

(A) If
$$\mathbf{x} \in \bigotimes_{i \in I} C_i$$
, then $(\forall J \subset I) \quad G_J(\mathbf{x}) \ge 0$.

(B) \boldsymbol{x} is a stationary point of (1) if and only if $\boldsymbol{x} \in \bigotimes_{i \in I} C_i$ and $G_i(\boldsymbol{x}) = 0$.

Frank Wolfe gaps

Recall $I = \{1, \ldots, m\}$. The **Frank-Wolfe gap** at $x \in \mathbb{R}^N$ is

$$G_{I}(\mathbf{x}) = \langle \nabla f(\mathbf{x}) \mid \mathbf{x} - \mathsf{LMO}_{\times_{i \in I} C_{i}}(\nabla f(\mathbf{x})) \rangle = \sum_{i \in I} \langle \nabla^{i} f(\mathbf{x}) \mid \mathbf{x}^{i} - \mathsf{LMO}_{C_{i}}(\nabla^{i} f(\mathbf{x})) \rangle.$$

A partial Frank-Wolfe gap is given by

$$(\forall J \subset I) \quad G_J(\mathbf{x}) = \sum_{i \in J} \langle \nabla^i f(\mathbf{x}) \mid \mathbf{x}^i - \mathsf{LMO}_{C_i}(\nabla^i f(\mathbf{x})) \rangle$$

Fact

(A) If
$$\mathbf{x} \in \bigotimes_{i \in I} C_i$$
, then $(\forall J \subset I) \quad G_J(\mathbf{x}) \ge 0$.

(B) \mathbf{x} is a stationary point of (1) if and only if $\mathbf{x} \in \bigotimes_{i \in I} C_i$ and $G_I(\mathbf{x}) = 0$.

 \Rightarrow nonconvex convergence results typically show first order criticality: $G_l(\mathbf{x}_t) \rightarrow 0$.

		Analysis		
0000	000	0000000	0000	0000

Smoothness and short-steps

For $L_f > 0$, the function f is L_f -smooth on a convex set C if

$$(\forall \mathbf{x}, \mathbf{y} \in C) \quad f(\mathbf{y}) - f(\mathbf{x}) \leqslant \langle \nabla f(\mathbf{x}) \mid \mathbf{y} - \mathbf{x} \rangle + \frac{L_f}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$

		Analysis		
0000	000	0000000	0000	0000

Smoothness and short-steps

For $L_f > 0$, the function f is L_f -smooth on a convex set C if

$$(\forall \mathbf{x}, \mathbf{y} \in C) \quad f(\mathbf{y}) - f(\mathbf{x}) \leqslant \langle \nabla f(\mathbf{x}) \mid \mathbf{y} - \mathbf{x} \rangle + \frac{L_f}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$

For BCFW, this means

$$f(\boldsymbol{x}_{t+1}) - f(\boldsymbol{x}_t) \leq \sum_{i \in I_t} \gamma_t^i \underbrace{\langle \nabla^i f(\boldsymbol{x}_t) \mid \boldsymbol{v}_t^i - \boldsymbol{x}_t^i \rangle}_{-G_i(\boldsymbol{x}_t)} + \frac{L_f}{2} (\gamma_t^i)^2 \| \boldsymbol{v}_t^i - \boldsymbol{x}_t^i \|^2.$$

Smoothness and short-steps

For $L_f > 0$, the function f is L_f -smooth on a convex set C if

$$(\forall \mathbf{x}, \mathbf{y} \in C) \quad f(\mathbf{y}) - f(\mathbf{x}) \leqslant \langle \nabla f(\mathbf{x}) \mid \mathbf{y} - \mathbf{x} \rangle + \frac{L_f}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$

For BCFW, this means

$$f(\boldsymbol{x}_{t+1}) - f(\boldsymbol{x}_t) \leq \sum_{i \in I_t} \gamma_t^i \underbrace{\langle \nabla^i f(\boldsymbol{x}_t) \mid \boldsymbol{v}_t^i - \boldsymbol{x}_t^i \rangle}_{-G_i(\boldsymbol{x}_t)} + \frac{L_f}{2} (\gamma_t^i)^2 \| \boldsymbol{v}_t^i - \boldsymbol{x}_t^i \|^2.$$

To tighten the inequality, the stepsize

$$\gamma_t^i = \underset{\gamma \in [0,1]}{\operatorname{Argmin}} \left(-\gamma G_i(\boldsymbol{x}_t) + \gamma^2 \frac{L_f}{2} \| \boldsymbol{v}_t^i - \boldsymbol{x}_t^i \|^2 \right) = \min \left\{ \frac{G_i(\boldsymbol{x}_t)}{L_f \| \boldsymbol{v}_t^i - \boldsymbol{x}_t^i \|^2}, 1 \right\}, \quad \text{(short)}$$

11

is known as the componentwise **short step**.

Smoothness and short-steps

For $L_f > 0$, the function f is L_f -smooth on a convex set C if

$$(\forall \mathbf{x}, \mathbf{y} \in C) \quad f(\mathbf{y}) - f(\mathbf{x}) \leqslant \langle \nabla f(\mathbf{x}) \mid \mathbf{y} - \mathbf{x} \rangle + \frac{L_f}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$

For BCFW, this means

$$f(\boldsymbol{x}_{t+1}) - f(\boldsymbol{x}_t) \leq \sum_{i \in I_t} \gamma_t^i \underbrace{\langle \nabla^i f(\boldsymbol{x}_t) \mid \boldsymbol{v}_t^i - \boldsymbol{x}_t^i \rangle}_{-G_i(\boldsymbol{x}_t)} + \frac{L_f}{2} (\gamma_t^i)^2 \|\boldsymbol{v}_t^i - \boldsymbol{x}_t^i\|^2.$$

To tighten the inequality, the stepsize

$$\gamma_t^i = \underset{\gamma \in [0,1]}{\operatorname{Argmin}} \left(-\gamma G_i(\boldsymbol{x}_t) + \gamma^2 \frac{L_f}{2} \| \boldsymbol{v}_t^i - \boldsymbol{x}_t^i \|^2 \right) = \min \left\{ \frac{G_i(\boldsymbol{x}_t)}{L_f \| \boldsymbol{v}_t^i - \boldsymbol{x}_t^i \|^2}, 1 \right\}, \quad \text{(short)}$$

11

is known as the componentwise **short step**. Downside: requires upper-estimate of L_f .

Our approach	Analysis	
	0000000	

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

Our approach	Analysis	
	0000000	

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ_t^i based on an estimated the smoothness constant \widetilde{M} .

Our approach	Analysis	
	0000000	

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

- 1. Update γ_t^i based on an estimated the smoothness constant \widetilde{M} .
- 2. If a desired inequality holds between x_t and x_{t+1} : done.

Our approach	Analysis	
	0000000	

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

- 1. Update γ_t^i based on an estimated the smoothness constant \overline{M} .
- 2. If a desired inequality holds between x_t and x_{t+1} : done.
- 3. Else, increase $M \leftarrow \tau M$ by $\tau > 1$ and recompute \mathbf{x}_{t+1} until the desired inequality holds.

Our approach	Analysis	
	0000000	

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

- 1. Update γ_t^i based on an estimated the smoothness constant \overline{M} .
- 2. If a desired inequality holds between x_t and x_{t+1} : done.
- 3. Else, increase $M \leftarrow \tau M$ by $\tau > 1$ and recompute \mathbf{x}_{t+1} until the desired inequality holds.

Pros: No a-priori knowledge of L_f ; sometimes we get larger steps.

Cons: Extra function and/or gradient evaluations.

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

- 1. Update γ_t^i based on an estimated the smoothness constant \widetilde{M} .
- 2. If a desired inequality holds between x_t and x_{t+1} : done.
- 3. Else, increase $M \leftarrow \tau M$ by $\tau > 1$ and recompute \mathbf{x}_{t+1} until the desired inequality holds.

Pros: No a-priori knowledge of L_f ; sometimes we get larger steps.

Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and L_f-smooth. Then,

$$(\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^N) \quad f(\mathbf{x}) - f(\mathbf{y}) - \langle \nabla f(\mathbf{y}) \mid \mathbf{x} - \mathbf{y} \rangle \geq \frac{\| \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}) \|^2}{2L_f}.$$

Our approach	Analysis	
	0000000	

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

- 1. Update γ_t^i based on an estimated the smoothness constant \overline{M} .
- 2. If (2^*) holds between x_t and x_{t+1} : done.
- 3. Else, increase $M \leftarrow \tau M$ by $\tau > 1$ and recompute \mathbf{x}_{t+1} until (2^{*}) holds.

Pros: No a-priori knowledge of L_f ; sometimes we get larger steps.

Cons: Extra function and/or gradient evaluations.

Fact (Hazan & Luo, 2016)

Let f be convex and L_f -smooth. Then, for \widetilde{M} sufficiently large,

$$f(\boldsymbol{x}_t) - f(\boldsymbol{x}_{t+1}) - \langle \nabla f(\boldsymbol{x}_{t+1}) \mid \boldsymbol{x}_t - \boldsymbol{x}_{t+1} \rangle \geq \frac{\|\nabla f(\boldsymbol{x}_t) - \nabla f(\boldsymbol{x}_{t+1})\|^2}{2\widetilde{\boldsymbol{\mathcal{M}}}}.$$
 (2*)

Lemma (Progress bound via smoothness and convexity, short-step)

Let $X_{i \in I} C_i \subset \mathcal{H}$ be a product of *m* nonempty compact convex sets, let *f* be convex and L_f -smooth, let *D* be the diameter of $X_{i \in I} C_i$, and assume (*). Let \mathbf{x}^* solve (1), and set $H_t = f(\mathbf{x}_t) - f(\mathbf{x}^*)$. Then

$$H_t - H_{t+K} \ge \begin{cases} H_t + A_t - \frac{KL_f D^2}{2}, & \text{if } H_t + A_t \ge KL_f D^2; \\ \frac{(H_t + A_t)^2}{2KL_f D^2}, & \text{if } H_t + A_t \le KL_f D^2, \text{ where} \end{cases}$$

$$A_{t} = \sum_{k=1}^{K-1} G_{\underbrace{I_{t+k-1} \cap (I_{t+k} \cup \cdots \cup I_{t+K-1})}_{J_{k}}}(\mathbf{x}_{t+k}) \ge 0$$

 A_t describes partial F-W gaps for all re-activated components.

Lemma (Progress bound via smoothness and convexity, short-step)

Let $X_{i \in I} C_i \subset \mathcal{H}$ be a product of *m* nonempty compact convex sets, let *f* be convex and L_f -smooth, let *D* be the diameter of $X_{i \in I} C_i$, and assume (*). Let \mathbf{x}^* solve (1), and set $H_t = f(\mathbf{x}_t) - f(\mathbf{x}^*)$. Then

$$H_t - H_{t+K} \ge \begin{cases} H_t + A_t - \frac{KL_f D^2}{2}, & \text{if } H_t + A_t \ge KL_f D^2; \\ \frac{(H_t + A_t)^2}{2KL_f D^2}, & \text{if } H_t + A_t \le KL_f D^2, \text{ where} \end{cases}$$

$$A_{t} = \sum_{k=1}^{K-1} G_{\underbrace{I_{t+k-1} \cap (I_{t+k} \cup \cdots \cup I_{t+K-1})}_{J_{k}}}(\mathbf{x}_{t+k}) \ge \sum_{k=1}^{K-1} f(\mathbf{x}_{t+k}) - \min_{\substack{\mathbf{x} \in X_{i \in I} C_{i} \\ \mathbf{x}^{I \setminus J_{k}} = \mathbf{x}_{t+k}^{I \setminus J_{k}}}} f(\mathbf{x}) \ge 0.$$

 A_t describes partial F-W gaps for all re-activated components.

Lemma (Progress bound via smoothness and convexity, short-step)

Let $X_{i \in I} C_i \subset \mathcal{H}$ be a product of *m* nonempty compact convex sets, let *f* be convex and L_f -smooth, let *D* be the diameter of $X_{i \in I} C_i$, and assume (*). Let \mathbf{x}^* solve (1), and set $H_t = f(\mathbf{x}_t) - f(\mathbf{x}^*)$. Then

$$H_t - H_{t+K} \ge \begin{cases} H_t + A_t - \frac{KL_f D^2}{2}, & \text{if } H_t + A_t \ge KL_f D^2; \\ \frac{(H_t + A_t)^2}{2KL_f D^2}, & \text{if } H_t + A_t \le KL_f D^2, \text{ where} \end{cases}$$

$$A_{t} = \sum_{k=1}^{K-1} G_{\underbrace{I_{t+k-1} \cap (I_{t+k} \cup \cdots \cup I_{t+K-1})}_{J_{k}}}(\mathbf{x}_{t+k}) \ge \sum_{k=1}^{K-1} f(\mathbf{x}_{t+k}) - \min_{\substack{\mathbf{x} \in X_{i \in I} C_{i} \\ \mathbf{x}^{I \setminus J_{k}} = \mathbf{x}_{t+k}^{I \setminus J_{k}}}} f(\mathbf{x}) \ge 0.$$

 A_t may explain good behavior in experiments.

Lemma (Progress bound via smoothness and convexity, short-step)

Let $X_{i \in I} C_i \subset \mathcal{H}$ be a product of *m* nonempty compact convex sets, let *f* be convex and L_f -smooth, let *D* be the diameter of $X_{i \in I} C_i$, and assume (*). Let \mathbf{x}^* solve (1), and set $H_t = f(\mathbf{x}_t) - f(\mathbf{x}^*)$. Then

$$H_t - H_{t+K} \ge \begin{cases} H_t + A_t - \frac{KL_f D^2}{2}, & \text{if } H_t + A_t \ge KL_f D^2; \\ \frac{(H_t + A_t)^2}{2KL_f D^2}, & \text{if } H_t + A_t \le KL_f D^2, \text{ where} \end{cases}$$

$$A_{t} = \sum_{k=1}^{K-1} G_{\underbrace{I_{t+k-1} \cap (I_{t+k} \cup \cdots \cup I_{t+K-1})}_{J_{k}}}(\mathbf{x}_{t+k}) \ge \sum_{k=1}^{K-1} f(\mathbf{x}_{t+k}) - \min_{\substack{\mathbf{x} \in X_{i \in I} C_{i} \\ \mathbf{x}^{I \setminus J_{k}} = \mathbf{x}_{t+k}^{I \setminus J_{k}}}} f(\mathbf{x}) \ge 0.$$

We don't know how to leverage A_t s for an improved rate!

Our approach	Analysis	
	0000000	

Lemma (Progress bound via smoothness and convexity, adaptive step size strategy)

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of *m* nonempty compact convex sets, let *f* be convex and L_f -smooth, let *D* be the diameter of $\times_{i \in I} C_i$, let $0 < \eta \leq 1 < \tau$ and $M_0 > 0$, and assume (*). Let \mathbf{x}^* solve (1), and set $H_t = f(\mathbf{x}_t) - f(\mathbf{x}^*)$. Then

$$H_{t} - H_{t+K} \ge \begin{cases} H_{t} + A_{t} - \frac{K \max\{\eta^{t} M_{0}, \tau L_{f}\} D^{2}}{2}, & \text{if } H_{t} + A_{t} \ge K \max\{\eta^{t} M_{0}, \tau L_{f}\} D^{2}; \\ \frac{(H_{t} + A_{t})^{2}}{2K \max\{\eta^{t} M_{0}, \tau L_{f}\} D^{2}}, & \text{if } H_{t} + A_{t} \le K \max\{\eta^{t} M_{0}, \tau L_{f}\} D^{2}, \end{cases}$$

$$A_{t} = \sum_{k=1}^{K-1} G_{\underbrace{I_{t+k-1} \cap (I_{t+k} \cup \cdots \cup I_{t+K-1})}_{J_{k}}}(\mathbf{x}_{t+k}) \ge \sum_{k=1}^{K-1} f(\mathbf{x}_{t+k}) - \min_{\substack{\mathbf{x} \in \times_{i \in I} C_{i} \\ \mathbf{x}^{\prime \setminus J_{k}} = \mathbf{x}_{t+k}^{\prime \setminus J_{k}}}} f(\mathbf{x}) \ge 0.$$

 A_t describes partial F-W gaps for all re-activated components.

Our approach	Analysis	
	00000000	

Convex setting: flexible stepsizes

Theorem

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of *m* nonempty compact convex sets, let *f* be convex and L_f -smooth, let $\tau > 1 \ge \eta$ and $M_0 > 0$ be approximation parameters, let *D* be the diameter of $\times_{i \in I} C_i$, let $\mathbf{x}_0 \in \mathbb{R}^N$, let \mathbf{x}^* solve (1), and assume (*). Set $n_0 := \max\{\lceil \log(\tau L_f/(\eta M_0))/(K \log \eta) \rceil, 0\}$. Then,

$$f(\mathbf{x}_{nK}) - f(\mathbf{x}^*) \leq \begin{cases} \min_{0 \leq p \leq n-1} \left\{ \frac{K\eta^{pK} M_0 D^2}{2} - A_{pK} \right\} & \text{if } 1 \leq n \leq n_0 + 1 \\ \frac{2K\tau L_f D^2}{n - n_0 + \sum_{p=n_0}^n \frac{2A_{pK}}{f(\mathbf{x}_{n_0}) - f(\mathbf{x}^*)} + \left(\frac{A_{pK}}{f(\mathbf{x}_{n_0}) - f(\mathbf{x}^*)}\right)^2 & \text{if } n > n_0 + 1. \end{cases}$$

After *t* iterations, Adaptive-BCFW has evaluated *f* and ∇f at-most $2 + \lceil \log_{\tau}(L_f/\eta^t M_0) \rceil$ times.

Our approach	Analysis	
	00000000	

Convex setting: flexible stepsizes

Theorem

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of *m* nonempty compact convex sets, let *f* be convex and L_f -smooth, let $\tau > 1 \ge \eta$ and $M_0 > 0$ be approximation parameters, let *D* be the diameter of $\times_{i \in I} C_i$, let $\mathbf{x}_0 \in \mathbb{R}^N$, let \mathbf{x}^* solve (1), and assume (*). Set $n_0 := \max\{\lceil \log(\tau L_f/(\eta M_0))/(K \log \eta) \rceil, 0\}$. Then,

$$f(\mathbf{x}_{nK}) - f(\mathbf{x}^*) \leq \begin{cases} \min_{0 \leq p \leq n-1} \left\{ \frac{K\eta^{pK} M_0 D^2}{2} - A_{pK} \right\} & \text{if } 1 \leq n \leq n_0 + 1 \\ \\ \frac{2K\tau L_f D^2}{n - n_0 + \sum_{p=n_0}^n \frac{2A_{pK}}{f(\mathbf{x}_{n_0}) - f(\mathbf{x}^*)} + \left(\frac{A_{pK}}{f(\mathbf{x}_{n_0}) - f(\mathbf{x}^*)} \right)^2 & \text{if } n > n_0 + 1. \end{cases}$$

After *t* iterations, Adaptive-BCFW has evaluated *f* and ∇f at-most $2 + \lceil \log_{\tau}(L_f/\eta^t M_0) \rceil$ times.

ightarrow After t iterations, matches $\mathcal{O}({\cal K}/t)$ rate for convex cyclic setting

	Our approach	Analysis		
0000	000	00000000	0000	0000

Corollary: Parallelized short-step BCFW

Corollary

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of *m* nonempty compact convex sets, let *f* be convex and L_f -smooth, let *D* be the diameter of $\times_{i \in I} C_i$, let \mathbf{x}^* solve (1), and assume (*). Then,

$$(\forall n \in \mathbb{N}) \quad f(\mathbf{x}_{nK}) - f(\mathbf{x}^*) \leq \begin{cases} \frac{KL_f D^2}{2} - A_0 & \text{if } n = 1\\ \frac{2KL_f D^2}{n - 1 + \sum_{p=1}^n \frac{2A_{pK}}{f(x_1) - f(\mathbf{x}^*)} + \left(\frac{A_{pK}}{f(x_1) - f(\mathbf{x}^*)}\right)^2 & \text{if } n \geq 2. \end{cases}$$

Furthermore, Short-step BCFW requires one gradient evaluation per iteration.

	Our approach	Analysis		
0000	000	00000000	0000	0000

Corollary: Parallelized short-step BCFW

Corollary

Let $\times_{i \in I} C_i \subset \mathcal{H}$ be a product of *m* nonempty compact convex sets, let *f* be convex and L_f -smooth, let *D* be the diameter of $\times_{i \in I} C_i$, let \mathbf{x}^* solve (1), and assume (*). Then,

$$(\forall n \in \mathbb{N}) \quad f(\mathbf{x}_{nK}) - f(\mathbf{x}^*) \leq \begin{cases} \frac{KL_f D^2}{2} - A_0 & \text{if } n = 1\\ \frac{2KL_f D^2}{n - 1 + \sum_{p=1}^n \frac{2A_{pK}}{f(x_1) - f(\mathbf{x}^*)} + \left(\frac{A_{pK}}{f(x_1) - f(\mathbf{x}^*)}\right)^2 & \text{if } n \geq 2. \end{cases}$$

Furthermore, Short-step BCFW requires one gradient evaluation per iteration.

- \rightarrow Matches rate and constant for non-block Short-step FW.
- \rightarrow Easier to parallelize than Adaptive BCFW.

	Analysis	
	0000000	

Nonconvex convergence

Theorem (Nonconvex convergence)

Let $X_{i \in I} C_i \subset \mathcal{H}$ be a product of *m* nonempty compact convex sets with diameter *D*. Let ∇f be L_f -Lipschitz continuous on $X_{i \in I} C_i$, set $H_0 = f(\mathbf{x}_0) - \inf f(X_{i \in I} C_i)$. Suppose that (*) holds. Then, for every $n \in \mathbb{N}$, Short-step BCFW guarantees

$$\min_{0\leqslant p\leqslant n-1}G_I(\boldsymbol{x}_{pK})\leqslant \frac{1}{n}\sum_{p=0}^{n-1}G_I(\boldsymbol{x}_{pK})\leqslant \begin{cases} \frac{2H_0-\sum_{p=0}^{n-1}A_{pK}}{n}+\frac{KL_fD^2}{2} & \text{if } n\leqslant \frac{2H_0}{KL_fD^2}\\ 2D\sqrt{\frac{H_0KL_f}{n}}-\frac{\sum_{p=0}^{n-1}A_{pK}}{n} & \text{otherwise.} \end{cases}$$

In particular, there exists a subsequence $(n_k)_{k\in\mathbb{N}}$ such that $G_I(\mathbf{x}_{n_kK}) \to 0$, and every accumulation point of $(\mathbf{x}_{n_kK})_{k\in\mathbb{N}}$ is a stationary point of (1).

 \rightarrow Reactivated gap terms reappear!

	Analysis	
	0000000	

Nonconvex convergence

Theorem (Nonconvex convergence)

Let $X_{i \in I} C_i \subset \mathcal{H}$ be a product of *m* nonempty compact convex sets with diameter *D*. Let ∇f be L_f -Lipschitz continuous on $X_{i \in I} C_i$, set $H_0 = f(\mathbf{x}_0) - \inf f(X_{i \in I} C_i)$. Suppose that (*) holds. Then, for every $n \in \mathbb{N}$, Short-step BCFW guarantees

$$\min_{0\leqslant p\leqslant n-1}G_I(\boldsymbol{x}_{pK})\leqslant \frac{1}{n}\sum_{p=0}^{n-1}G_I(\boldsymbol{x}_{pK})\leqslant \begin{cases} \frac{2H_0-\sum_{p=0}^{n-1}A_{pK}}{n}+\frac{KL_fD^2}{2} & \text{if } n\leqslant \frac{2H_0}{KL_fD^2}\\ 2D\sqrt{\frac{H_0KL_f}{n}}-\frac{\sum_{p=0}^{n-1}A_{pK}}{n} & \text{otherwise.} \end{cases}$$

In particular, there exists a subsequence $(n_k)_{k\in\mathbb{N}}$ such that $G_I(\mathbf{x}_{n_kK}) \to 0$, and every accumulation point of $(\mathbf{x}_{n_kK})_{k\in\mathbb{N}}$ is a stationary point of (1).

- \rightarrow Reactivated gap terms reappear!
- \rightarrow After *t* iterations, minimal F-W gap converges like $\mathcal{O}(K/\sqrt{t})$.

n Our approach Analysis Numerical experiments occordinate Frank-Wolfe Algorithm

1. Motivation

2. Our approach

3. Analysis

4. Numerical experiments

	Numerical experiments 0000	
		-

Toy intersection problem (convex)

ľ

Find a matrix in the intersection of the spectrahedron $C_1 = \{X \in \mathbb{S}^{r \times r}_+ | \operatorname{Trace}(X) = 1\}$ and the hypercube $C_2 = [-5, \mu]^{r \times r}$ $(\mu = 1/r)$.

$$\min_{\boldsymbol{x} \in C_1 \times C_2} \ \frac{1}{2} \| \boldsymbol{x}^1 - \boldsymbol{x}^2 \|^2$$

	Numerical experiments	
	0000	

Toy intersection problem (convex)

Find a matrix in the intersection of the spectrahedron $C_1 = \{X \in \mathbb{S}_+^{r \times r} | \operatorname{Trace}(X) = 1\}$ and the hypercube $C_2 = [-5, \mu]^{r \times r}$ $(\mu = 1/r)$.

$$\underset{\boldsymbol{x}\in C_1\times C_2}{\text{minimize}} \ \frac{1}{2} \|\boldsymbol{x}^1 - \boldsymbol{x}^2\|^2$$

- \rightarrow LMO $_{\mathcal{C}_1}$ is far more expensive than LMO $_{\mathcal{C}_2}.$
- \rightarrow We use Short-step BCFW to compare the following block activations: full, cyclic, permuted-cyclic, and "q-lazy":

$$(\forall t \in \mathbb{N})$$
 $I_t = \begin{cases} \{1,2\} & \text{if } t \equiv 0 \mod q; \\ \{2\} & \text{otherwise.} \end{cases}$ $(q-Lazy)$

Experiments

Toy intersection problem (convex)

comparing block-activations: full, cyclic, permuted-cyclic, and

18

 $\underset{\boldsymbol{x} \in C_1 \times C_2}{\text{minimize}} \ \frac{1}{2} \| \boldsymbol{x}^1 - \boldsymbol{x}^2 \|^2 \qquad (\forall t \in \mathbb{N}) \quad I_t = \begin{cases} \{1, 2\} & \text{if } t \equiv 0 \mod q; \\ \{1\} & \text{otherwise.} \end{cases}$ (q-lazy)

Experiments

Toy intersection problem (convex)

comparing block-activations: full, cyclic, permuted-cyclic, and

18

 $\underset{\boldsymbol{x} \in C_1 \times C_2}{\text{minimize}} \ \frac{1}{2} \| \boldsymbol{x}^1 - \boldsymbol{x}^2 \|^2 \qquad (\forall t \in \mathbb{N}) \quad I_t = \begin{cases} \{1, 2\} & \text{if } t \equiv 0 \mod q; \\ \{1\} & \text{otherwise.} \end{cases}$ (q-lazy)

Experiments

Toy intersection problem (convex)

comparing block-activations: full, cyclic, permuted-cyclic, and

 $\underset{\boldsymbol{x} \in C_1 \times C_2}{\text{minimize}} \ \frac{1}{2} \| \boldsymbol{x}^1 - \boldsymbol{x}^2 \|^2 \qquad (\forall t \in \mathbb{N}) \quad I_t = \begin{cases} \{1, 2\} & \text{if } t \equiv 0 \mod q; \\ \{1\} & \text{otherwise.} \end{cases}$ (q-lazy)

Our approach	Numerical experiments	
	0000	

Toy Difference-of-Convex quadratic problem

Find a $2r \times r$ matrix such that its first $r \times r$ submatrix satisfies $||X||_{\infty} \leq 1$, and its second submatrix satisfies $||X||_{nuc} \leq 1$. To investigate BCFW when the number of components is large, we set $C_1 = \ldots = C_r = \{x \in \mathbb{R}^r \mid ||x||_{\infty} \leq 1\}$ and $C_{r+1} = \{X \in \mathbb{R}^{r \times r} \mid ||X||_{nuc} \leq 1\}$. For PSD $2r \times r$ matrices A and B, we seek to solve

$$\underset{\substack{\mathbf{x} \in \\ 1 \leq i \leq r+1}}{\text{minimize}} \langle [\mathbf{x}] \mid [\mathbf{x}] A \rangle - \langle [\mathbf{x}] \mid [\mathbf{x}] B \rangle$$

 \rightarrow For each instance, we verify A-B is indefinite.

 \rightarrow Problem is nonseparable

Our approach	Numerical experiments	
	0000	

Toy Difference-of-Convex quadratic problem

- \rightarrow LMO $_{\mathcal{C}_{r+1}}$ is far more expensive than $(\text{LMO}_{\mathcal{C}_i})_{1\leqslant i\leqslant r}.$
- \rightarrow We use Short-step BCFW to compare the following block activations: full, cyclic, permuted-cyclic, and "(p,q)-lazy":

$$(\forall t \in \mathbb{N}) \quad I_t = \begin{cases} I & \text{if } t \equiv 0 \pmod{q} \\ \{i_1, \dots, i_p\} \subset_R I \setminus \{r+1\} & \text{otherwise.} \end{cases}$$
((p,q)-Lazy)

Full update every q iterations; otherwise, update a random subset of p "cheap" coordinates in parallel.

Toy Difference-of-Convex quadratic problem

comparing full, cyclic, perm.-cyclic, and "(p, q)-lazy":

$$\underset{\substack{x \in \underset{1 \leq i \leq r+1}{\times} C_i}}{\text{minimize}} \langle [x] \mid [x]A \rangle - \langle [x] \mid [x]B \rangle \qquad \qquad I_t = \begin{cases} I & \text{if } t \equiv 0 \pmod{q} \\ \{i_1, \dots, i_p\} \subset_R I \setminus \{r+1\} & \text{otherwise.} \end{cases}$$

Toy Difference-of-Convex quadratic problem

comparing full, cyclic, perm.-cyclic, and "(p, q)-lazy":

$$\underset{\substack{x \in \underset{1 \leq i \leq r+1}{\times} C_i}}{\text{minimize}} \langle [x] \mid [x]A \rangle - \langle [x] \mid [x]B \rangle \qquad \qquad I_t = \begin{cases} I & \text{if } t \equiv 0 \pmod{q} \\ \{i_1, \dots, i_p\} \subset_R I \setminus \{r+1\} & \text{otherwise.} \end{cases}$$

Toy Difference-of-Convex quadratic problem

comparing full, cyclic, perm.-cyclic, and "(p, q)-lazy":

$$\underset{\substack{x \in X \\ 1 \leq i \leq r+1}}{\text{minimize}} \langle [x] \mid [x]A \rangle - \langle [x] \mid [x]B \rangle$$
 if $t \equiv 0 \pmod{q}$
$$I_t = \begin{cases} I & \text{if } t \equiv 0 \pmod{q} \\ \{i_1, \dots, i_p\} \subset_R I \setminus \{r+1\} & \text{otherwise.} \end{cases}$$

	Our approach		Numerical experiments	
0000	000	0000000	0000	0000

Conclusion

Draft can be found here:

https://zevwoodstock.github.io/media/publications/block.pdf

Contact: woodstock@zib.de or woodstzc@jmu.edu

Motivation 0000 Our approac

Analysis 00000000 Numerical experiments

References ●000

Thank you for your attention!

	Our approach			References
0000	000	0000000	0000	0000

References

- A. Beck, E. Pauwels, and S. Sabach, The cyclic block conditional gradient method for convex optimization problems SIAM J. Optim., vol. 25, no. 4, pp. 2024–2049, 2015
- C. Combettes and S. Pokutta, Complexity of linear minimization and projection on some sets *Oper. Res. Lett.*, vol. 49, no. 4, pp. 565–571, 2021
- P. L. Combettes and ZW, Signal recovery from inconsistent nonlinear observations Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp 5872—5876, 2022.
- P. L. Combettes and ZW, A variational inequality model for the construction of signals from inconsistent nonlinear equations SIAM J. Imaging Sci., vol. 15, no. 1, pp. 84–109, 2022
- M. Frank and P. Wolfe, An algorithm for quadratic programming *Naval Res. Logist. Quart.*, vol. 3, iss. 1–2, pp. 95–110, 1956
- **E**. Hazan and H. Luo, Variance-Reduced and Projection-Free Stochastic Optimization *Proc. ICML*, vol. 48, pp. 1263–1271, 2016

		References 00●0

References

- C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations SIAM, Philadelphia, 1995.
- S. Lacoste-Julien, M. Jaggi, M. Schmidt, P. Pletscher, Block-Coordinate Frank-Wolfe Optimization for Structural SVMs *Proc. ICML*, vol. 28, pp. 53–61, 2013
- A. Osokin, J.-B. Alayrac, I. Lukasewitz, P. Dokania, S. Lacoste-Julien, Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs *Proc. ICML*, vol. 48, pp. 593–602, 2016
- N. Ottavy, Strong convergence of projection-like methods in Hilbert spaces *J. Optim. Theory Appl.*, vol. 56, pp. 433–461, 1988
- M. Patriksson, Decomposition methods for differentiable optimization problems over Cartesian product sets *Comput. Optim. Appl.*, vol. 9, pp. 5–42, 1998

Motivation	Our approach	Analysis	Numerical experiments	References
0000	000	0000000		000●

References

- F. Pedregosa, G. Negiar, A. Askari, and M. Jaggi, Linearly convergent Frank-Wolfe with backtracking line-search *ICML*, pp. 1–10, 2020
- S. Pokutta, The Frank-Wolfe Algorithm: a Short Introduction Jahresber. Dtsch. Math.-Ver., vol. 126, pp. 3–35, 2024
- V. E. Shamanskii, A modification of Newton's method Ukran. Mat. Zh., vol. 19, pp. 133–138, 1967 (in Russian)
- Y.-X. Wang, V. Sadhanala, W. Dai, W. Neiswanger, S. Sra, E. Xing, Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms *Proc. ICML*, vol. 48, pp. 1548–1557, 2016
- **ZW** and S. Pokutta, Splitting the conditional gradient algorithm *arXiv:2311.05381*, 2024