Breaking the eyele: Flexible block-iterative analysis for the Frank-Wolfe algorithm

ISMP 2024, Montréal, QC
Zev Woodstock*, Gábor Braun, and Sebastian Pokutta
Zuse Institute Berlin (ZIB) \& Technische Universität Berlin Interactive Optimization and Learning (IOL) Lab

July 2024

[^0]

Flexible Block-Coordinate Frank-Wolfe Algorithm

\author{

1. Motivation
}
2. Our approach
3. Analysis
4. Numerical experiments

Problem setting

Given m nonempty closed convex sets $C_{i} \subset \mathbb{R}^{n_{i}}$ with $i \in\{1, \ldots, m\}=: I$ and a smooth function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $N=\sum_{i \in I} n_{i}$, solve

$$
\begin{equation*}
\operatorname{minimize}_{x \in C_{1} \times \ldots \times C_{m}} f(x) . \tag{1}
\end{equation*}
$$

Applications: matrix factorization, SVM training, sequence labeling, splitting,

Problem setting

Given m nonempty closed convex sets $C_{i} \subset \mathbb{R}^{n_{i}}$ with $i \in\{1, \ldots, m\}=$: I and a smooth function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $N=\sum_{i \in I} n_{i}$, solve

$$
\begin{equation*}
\operatorname{minimize}_{x \in C_{1} \times \ldots \times C_{m}} f(x) . \tag{1}
\end{equation*}
$$

Applications: matrix factorization, SVM training, sequence labeling, splitting,

Two families of first-order methods to solve (1): projection methods and Frank-Wolfe AKA "CG" methods, which use linear minimization oracles.

$$
\begin{equation*}
\operatorname{proj}_{C}(\boldsymbol{x})=\underset{\boldsymbol{v} \in C}{\operatorname{Argmin}}\|\boldsymbol{x}-\boldsymbol{v}\|^{2} \quad \mathrm{LMO}_{C}(\boldsymbol{x}) \in \underset{\boldsymbol{v} \in C}{\operatorname{Argmin}}\langle\boldsymbol{x} \mid \boldsymbol{v}\rangle \tag{2}
\end{equation*}
$$

Problem setting

Given m nonempty closed convex sets $C_{i} \subset \mathbb{R}^{n_{i}}$ with $i \in\{1, \ldots, m\}=$: and a smooth function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $N=\sum_{i \in I} n_{i}$, solve

$$
\begin{equation*}
\operatorname{minimize}_{x \in C_{1} \times \ldots \times C_{m}} f(x) . \tag{1}
\end{equation*}
$$

Applications: matrix factorization, SVM training, sequence labeling, splitting, ...
Two families of first-order methods to solve (1): projection methods and Frank-Wolfe AKA "CG" methods, which use linear minimization oracles.

$$
\begin{equation*}
\operatorname{proj}_{C}(\boldsymbol{x})=\underset{\boldsymbol{v} \in C}{\operatorname{Argmin}}\|\boldsymbol{x}-\boldsymbol{v}\|^{2} \quad \operatorname{LMO}_{C}(\boldsymbol{x}) \in \underset{\boldsymbol{v} \in C}{\operatorname{Argmin}}\langle\boldsymbol{x} \mid \boldsymbol{v}\rangle \tag{2}
\end{equation*}
$$

[Combettes/Pokutta, '21]: For many $\underbrace{\text { constraints, }} C$, proj $_{C}$ is more expensive than LMO_{C}. (e.g., nuclear norm ball, ℓ_{1} ball, probability simplex, Birkhoff polytope, general LP, ...)

Problem setting

Given m nonempty closed convex sets $C_{i} \subset \mathbb{R}^{n_{i}}$ with $i \in\{1, \ldots, m\}=: /$ and a smooth function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $N=\sum_{i \in I} n_{i}$, solve

$$
\begin{equation*}
\operatorname{minimize}_{x \in C_{1} \times \ldots \times C_{m}} f(x) . \tag{1}
\end{equation*}
$$

Applications: matrix factorization, SVM training, sequence labeling, splitting,
For $\boldsymbol{x} \in \mathbb{R}^{N}$ with components $\boldsymbol{x}=\left(\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{m}\right)\left(\boldsymbol{x}_{i} \in \mathbb{R}^{n_{i}}\right)$,

$$
\operatorname{LMO}_{C_{1} \times \ldots \times C_{m}}\left(x^{1}, \ldots, x^{m}\right)=\left(\operatorname{LMO}_{C_{1}} x^{1}, \ldots, \operatorname{LMO}_{C_{m}} x^{m}\right)
$$

Problem setting

Given m nonempty closed convex sets $C_{i} \subset \mathbb{R}^{n_{i}}$ with $i \in\{1, \ldots, m\}=$: $/$ and a smooth function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $N=\sum_{i \in I} n_{i}$, solve

$$
\begin{equation*}
\operatorname{minimize}_{x \in C_{1} \times \ldots \times C_{m}} f(\boldsymbol{x}) . \tag{1}
\end{equation*}
$$

Applications: matrix factorization, SVM training, sequence labeling, splitting,
For $\boldsymbol{x} \in \mathbb{R}^{N}$ with components $\boldsymbol{x}=\left(\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{m}\right)\left(\boldsymbol{x}_{i} \in \mathbb{R}^{n_{i}}\right)$,

$$
\operatorname{LMO}_{C_{1} \times \ldots \times C_{m}}\left(x^{1}, \ldots, x^{m}\right)=\left(\operatorname{LMO}_{C_{1}} x^{1}, \ldots, \mathrm{LMO}_{C_{m}} x^{m}\right)
$$

"Let's avoid computing so many LMOs per iteration!" (paraphrased)

- [Patriksson, '98], [Lacoste-Julien et al., 2013], [Beck et al., 2015], [Wang et al., 2016], [Osokin et al., 2016], [Bomze et al., 2024], ...

(Generic) BCFW Algorithm

Known modes of convergence:

```
for \(t=0,1\) to \(\ldots\) do
    Select \(I_{t} \subset\{1, \ldots, m\}\)
    \(\boldsymbol{g}_{t} \leftarrow \nabla f\left(\boldsymbol{x}_{t}\right)\)
        for \(i=1\) to \(m\) do
            if \(i \in I_{t}\) then
                \(\boldsymbol{v}_{t}^{i} \leftarrow \mathrm{LMO}_{i}\left(\boldsymbol{g}_{t}^{i}\right)\)
                \(\gamma_{t}^{i} \leftarrow\) Step size
                \(\boldsymbol{x}_{t+1}^{i} \leftarrow \boldsymbol{x}_{t}^{i}+\gamma_{t}^{i}\left(\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right)\)
            else
                \(\boldsymbol{x}_{t+1}^{i} \leftarrow \boldsymbol{x}_{t}^{i}\)
            end if
        end for
    end for
```


(Generic) BCFW Algorithm

Known modes of convergence:

```
for \(t=0,1\) to \(\ldots\) do
    Select \(I_{t} \subset\{1, \ldots, m\}\)
    \(\boldsymbol{g}_{t} \leftarrow \nabla f\left(\boldsymbol{x}_{t}\right)\)
    for \(i=1\) to \(m\) do
        if \(i \in I_{t}\) then
        \(\boldsymbol{v}_{t}^{i} \leftarrow \mathrm{LMO}_{i}\left(\boldsymbol{g}_{t}^{i}\right)\)
        \(\gamma_{t}^{i} \leftarrow\) Step size
        \(\boldsymbol{x}_{t+1}^{i} \leftarrow \boldsymbol{x}_{t}^{i}+\gamma_{t}^{i}\left(\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right)\)
        else
        \(\boldsymbol{x}_{t+1}^{i} \leftarrow \boldsymbol{x}_{t}^{i}\)
        end if
        end for
    end for
```

- [Patriksson, 1998]:
- Asymptotic convergence if f convex
- Exact and Armijo linesearches fixed across all components $\gamma_{t}^{i}=\gamma_{t}$
- Full update ($I_{t}=\{1, \ldots, m\}$)
- Deterministic essentially cyclic $(\exists K>0)$:

$$
I_{t}=\left\{\mathfrak{i}_{t}\right\}, \text { with }\left\{\mathfrak{i}_{t}, \ldots, \mathfrak{i}_{t+K}\right\}=\{1, \ldots, m\}
$$

(Generic) BCFW Algorithm

Known modes of convergence:

- [Patriksson, 1998]:
- Asymptotic convergence if f convex
- Exact and Armijo linesearches fixed across all components $\gamma_{t}^{i}=\gamma_{t}$
- Full update ($I_{t}=\{1, \ldots, m\}$)
- Deterministic essentially cyclic $(\exists K>0)$:

$$
I_{t}=\left\{\mathfrak{i}_{t}\right\}, \text { with }\left\{\mathfrak{i}_{t}, \ldots, \mathfrak{i}_{t+K}\right\}=\{1, \ldots, m\}
$$

- [Beck et al., 2015]:
- $\mathcal{O}(m / t)$ convergence (f convex)
- open-loop, short-step, and backtracking γ_{t}^{i}
- Deterministic cyclic updates

$$
I_{t}=\left\{\mathfrak{i}_{t}\right\}, \text { with }\left\{\mathfrak{i}_{t}, \ldots, \mathfrak{i}_{t+m}\right\}=\{1, \ldots, m\}
$$

(Generic) BCFW Algorithm

Known modes of convergence:

```
for \(t=0,1\) to \(\ldots\) do
    Select \(I_{t} \subset\{1, \ldots, m\}\)
    \(\boldsymbol{g}_{t} \leftarrow \nabla f\left(\boldsymbol{x}_{t}\right)\)
    for \(i=1\) to \(m\) do
        if \(i \in I_{t}\) then
                \(\boldsymbol{v}_{t}^{i} \leftarrow \mathrm{LMO}_{i}\left(\boldsymbol{g}_{t}^{i}\right)\)
                \(\gamma_{t}^{i} \leftarrow\) Step size
                \(\boldsymbol{x}_{t+1}^{i} \leftarrow \boldsymbol{x}_{t}^{i}+\gamma_{t}^{i}\left(\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right)\)
        else
            \(\boldsymbol{x}_{t+1}^{i} \leftarrow \boldsymbol{x}_{t}^{i}\)
        end if
        end for
    end for
```

- Stochastic variants:
- $\mathcal{O}(m / t)$ primal convergence rate (f convex)
- Uniform singleton selection [Lacoste-Julien et al., 2013]
- Non-uniform singleton selection (based on suboptimality criterion) [Osokin et al., 2016]
- Uniform parallel selection with fixed block-sizes $\left|I_{t}\right|=p$ [Wang et al., 2016]

(Generic) BCFW Algorithm

Known modes of convergence:

```
for \(t=0,1\) to \(\ldots\) do
    Select \(I_{t} \subset\{1, \ldots, m\}\)
    \(\boldsymbol{g}_{t} \leftarrow \nabla f\left(\boldsymbol{x}_{t}\right)\)
    for \(i=1\) to \(m\) do
        if \(i \in I_{t}\) then
        \(\boldsymbol{v}_{t}^{i} \leftarrow \mathrm{LMO}_{i}\left(\boldsymbol{g}_{t}^{i}\right)\)
        \(\gamma_{t}^{i} \leftarrow\) Step size
        \(\boldsymbol{x}_{t+1}^{i} \leftarrow \boldsymbol{x}_{t}^{i}+\gamma_{t}^{i}\left(\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right)\)
        else
        \(\boldsymbol{x}_{t+1}^{i} \leftarrow \boldsymbol{x}_{t}^{i}\)
        end if
        end for
    end for
```

- Stochastic variants:
- $\mathcal{O}(m / t)$ primal convergence rate (f convex)
- Uniform singleton selection [Lacoste-Julien et al., 2013]
- Non-uniform singleton selection (based on suboptimality criterion) [Osokin et al., 2016]
- Uniform parallel selection with fixed block-sizes $\left|I_{t}\right|=p$ [Wang et al., 2016]
- [Bomze et al., 2024]:
- Linear convergence (KL condition $+\cdots$)
- Short-Step Chain (SSC) procedure: $\gamma_{t}^{i}, \boldsymbol{v}_{t}^{i}$
- Full updates ($I_{t}=\{1, \ldots, m\}$)
- Uniform singleton selection $\left(I_{t}=\left\{\mathfrak{i}_{t}\right\}\right)$
- Gauss-Southwell "greedy" singleton updates (based on suboptimality criterion).

Let's recap. . .

- Singleton updates:
\rightarrow cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random
- Parallel updates:
\rightarrow Full $\left(I_{t}=\{1, \ldots, m\}\right)$, or uniformly-random blocks of fixed size $\left|I_{t}\right|=p$
What if my LMOs have very different costs? What if I only have 4 processor cores?

Let's recap. . .

- Singleton updates:
\rightarrow cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random
- Parallel updates:
\rightarrow Full $\left(I_{t}=\{1, \ldots, m\}\right)$, or uniformly-random blocks of fixed size $\left|I_{t}\right|=p$
What if my LMOs have very different costs? What if I only have 4 processor cores?
What about. . .
- deterministic parallel updates?

Let's recap. . .

- Singleton updates:
\rightarrow cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random
- Parallel updates:
\rightarrow Full $\left(I_{t}=\{1, \ldots, m\}\right)$, or uniformly-random blocks of fixed size $\left|I_{t}\right|=p$
What if my LMOs have very different costs? What if I only have 4 processor cores?
What about. . .
- deterministic parallel updates?
- blocks with different sizes?

Let's recap. . .

- Singleton updates:
\rightarrow cyclic, essentially cyclic, Gauss-Southwell, (uniform or non-uniform) random
- Parallel updates:
\rightarrow Full $\left(I_{t}=\{1, \ldots, m\}\right)$, or uniformly-random blocks of fixed size $\left|I_{t}\right|=p$
What if my LMOs have very different costs? What if I only have 4 processor cores?
What about. . .
- deterministic parallel updates?
- blocks with different sizes?
- cost-aware methodologies? (e.g., if some LMOs are numerically expensive, and others are cheap)

Flexible Block-Coordinate Frank-Wolfe Algorithm

1. Motivation
2. Our approach
3. Analysis
4. Numerical experiments

A bit of history

Assumption

There exists a positive integer K such that, for every iteration t,

$$
(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_{n} .
$$

A bit of history

Assumption

There exists a positive integer K such that, for every iteration t,

$$
(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_{n} .
$$

Allows for:

- Deterministic, variable-size, parallel updates

A bit of history

Assumption
There exists a positive integer K such that, for every iteration t,

$$
(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_{n}
$$

Allows for:

- Deterministic, variable-size, parallel updates
- Already known to converge: Full, cyclic, essentially cyclic, ...

A bit of history

Assumption

There exists a positive integer K such that, for every iteration t,

$$
(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_{n} .
$$

Allows for:

- Deterministic, variable-size, parallel updates
- Already known to converge: Full, cyclic, essentially cyclic, ...
- "Lazy" updates: Over K iterations, update expensive LMO(s) once, and update cheap LMOs multiple times.

A bit of history

Assumption

There exists a positive integer K such that, for every iteration t,

$$
(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_{n} .
$$

Allows for:

- Deterministic, variable-size, parallel updates
- Already known to converge: Full, cyclic, essentially cyclic, ...
- "Lazy" updates: Over K iterations, update expensive LMO(s) once, and update cheap LMOs multiple times.
\rightarrow We can set the ratio of $\frac{\text { (expensive LMO evals) }}{\text { (cheap LMO evals) }}=\frac{1}{K}$ arbitrarily small.

A bit of history

Assumption

There exists a positive integer K such that, for every iteration t,

$$
(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_{n}
$$

To my knowledge, first appears in [Ottavy, 1988].

A bit of history

Assumption

There exists a positive integer K such that, for every iteration t,

$$
(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_{n}
$$

To my knowledge, first appears in [Ottavy, 1988].
Related to lazily updating Hessians in Newton's method [Shamanskii, 1967]

1967:
Canada

A bit of history

Assumption

There exists a positive integer K such that, for every iteration t,

$$
(\forall 1 \leqslant i \leqslant m) \quad i \in \bigcup_{n=t}^{t+K-1} I_{n} .
$$

To my knowledge, first appears in [Ottavy, 1988].
Related to lazily updating Hessians in Newton's method [Shamanskii, 1967] Apparently never considered for F-W algorithms before!?

Goals

Under Assumption (\star), establish competitive convergence rates.
What we did:

- f convex: $\mathcal{O}(K / t)$ rate (for primal gap) using:
- Short-step γ_{t}^{i}
- An adaptive stepsize scheme γ_{t}^{i}
- f nonconvex: $\mathcal{O}(K / \sqrt{t})$ rate (for F-W optimality gap) using short-step γ_{t}^{i}
- Some conjectures and interesting analysis along the way...

Flexible Block-Coordinate Frank-Wolfe Algorithm

1. Motivation
2. Our approach
3. Analysis
4. Numerical experiments

Notation and Background

Frank Wolfe gaps
Recall $I=\{1, \ldots, m\}$. The Frank-Wolfe gap at $\boldsymbol{x} \in \mathbb{R}^{N}$ is

$$
G_{l}(\boldsymbol{x})=\left\langle\nabla f(\boldsymbol{x}) \mid \boldsymbol{x}-\mathrm{LMO}_{\times_{i \in I}} c_{i}(\nabla f(\boldsymbol{x}))\right\rangle
$$

Notation and Background

Frank Wolfe gaps
Recall $I=\{1, \ldots, m\}$. The Frank-Wolfe gap at $\boldsymbol{x} \in \mathbb{R}^{N}$ is

$$
G_{l}(\boldsymbol{x})=\left\langle\nabla f(\boldsymbol{x}) \mid \boldsymbol{x}-\mathrm{LMO}_{\times_{i \in I} c_{i}}(\nabla f(\boldsymbol{x}))\right\rangle=\sum_{i \in I}\left\langle\nabla^{i} f(\boldsymbol{x}) \mid \boldsymbol{x}^{i}-\operatorname{LMO}_{C_{i}}\left(\nabla^{i} f(\boldsymbol{x})\right)\right\rangle
$$

Notation and Background

Frank Wolfe gaps
Recall $I=\{1, \ldots, m\}$. The Frank-Wolfe gap at $\boldsymbol{x} \in \mathbb{R}^{N}$ is

$$
G_{l}(\boldsymbol{x})=\left\langle\nabla f(\boldsymbol{x}) \mid \boldsymbol{x}-\mathrm{LMO}_{X_{i \in I} c_{i}}(\nabla f(\boldsymbol{x}))\right\rangle=\sum_{i \in I}\left\langle\nabla^{i} f(\boldsymbol{x}) \mid \boldsymbol{x}^{i}-\mathrm{LMO}_{C_{i}}\left(\nabla^{i} f(\boldsymbol{x})\right)\right\rangle
$$

A partial Frank-Wolfe gap is given by

$$
(\forall J \subset I) \quad G_{J}(x)=\sum_{i \in J}\left\langle\nabla^{i} f(x) \mid x^{i}-\operatorname{LMO}_{C_{i}}\left(\nabla^{i} f(x)\right)\right\rangle
$$

Notation and Background

Frank Wolfe gaps
Recall $I=\{1, \ldots, m\}$. The Frank-Wolfe gap at $\boldsymbol{x} \in \mathbb{R}^{N}$ is

$$
G_{l}(\boldsymbol{x})=\left\langle\nabla f(\boldsymbol{x}) \mid \boldsymbol{x}-\mathrm{LMO}_{X_{i \in I}} c_{i}(\nabla f(\boldsymbol{x}))\right\rangle=\sum_{i \in I}\left\langle\nabla^{i} f(\boldsymbol{x}) \mid \boldsymbol{x}^{i}-\mathrm{LMO}_{C_{i}}\left(\nabla^{i} f(\boldsymbol{x})\right)\right\rangle
$$

A partial Frank-Wolfe gap is given by

$$
(\forall J \subset I) \quad G_{J}(x)=\sum_{i \in J}\left\langle\nabla^{i} f(x) \mid x^{i}-\operatorname{LMO}_{C_{i}}\left(\nabla^{i} f(x)\right)\right\rangle
$$

Fact

(A) If $x \in X_{i \in I} C_{i}$, then $(\forall J \subset I) \quad G_{J}(x) \geqslant 0$.
(B) \boldsymbol{x} is a stationary point of (1) if and only if $\boldsymbol{x} \in X_{i \in I} C_{i}$ and $G_{l}(x)=0$.

Notation and Background

Frank Wolfe gaps
Recall $I=\{1, \ldots, m\}$. The Frank-Wolfe gap at $\boldsymbol{x} \in \mathbb{R}^{N}$ is

$$
G_{l}(\boldsymbol{x})=\left\langle\nabla f(\boldsymbol{x}) \mid \boldsymbol{x}-\mathrm{LMO}_{\times_{i \in I} C_{i}}(\nabla f(\boldsymbol{x}))\right\rangle=\sum_{i \in I}\left\langle\nabla^{i} f(\boldsymbol{x}) \mid \boldsymbol{x}^{i}-\operatorname{LMO}_{C_{i}}\left(\nabla^{i} f(\boldsymbol{x})\right)\right\rangle .
$$

A partial Frank-Wolfe gap is given by

$$
(\forall J \subset I) \quad G_{J}(x)=\sum_{i \in J}\left\langle\nabla^{i} f(x) \mid x^{i}-\operatorname{LMO}_{C_{i}}\left(\nabla^{i} f(x)\right)\right\rangle
$$

Fact

(A) If $x \in X_{i \in I} C_{i}$, then $(\forall J \subset I) \quad G_{J}(x) \geqslant 0$.
(B) \boldsymbol{x} is a stationary point of (1) if and only if $\boldsymbol{x} \in X_{i \in I} C_{i}$ and $G_{l}(x)=0$.
\Rightarrow nonconvex convergence results typically show first order criticality: $G_{l}\left(x_{t}\right) \rightarrow 0$.

Notation and Background

Smoothness and short-steps
For $L_{f}>0$, the function f is L_{f}-smooth on a convex set C if

$$
(\forall \boldsymbol{x}, \boldsymbol{y} \in C) \quad f(\boldsymbol{y})-f(\boldsymbol{x}) \leqslant\langle\nabla f(\boldsymbol{x}) \mid \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{L_{f}}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2}
$$

Notation and Background

Smoothness and short-steps
For $L_{f}>0$, the function f is L_{f}-smooth on a convex set C if

$$
(\forall \boldsymbol{x}, \boldsymbol{y} \in C) \quad f(\boldsymbol{y})-f(\boldsymbol{x}) \leqslant\langle\nabla f(\boldsymbol{x}) \mid \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{L_{f}}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2}
$$

For BCFW, this means

$$
f\left(\boldsymbol{x}_{t+1}\right)-f\left(\boldsymbol{x}_{t}\right) \leqslant \sum_{i \in I_{t}} \gamma_{t}^{i} \underbrace{\left\langle\nabla^{i} f\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right\rangle}_{-G_{i}\left(\boldsymbol{x}_{t}\right)}+\frac{L_{f}}{2}\left(\gamma_{t}^{i}\right)^{2}\left\|\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right\|^{2} .
$$

Notation and Background

Smoothness and short-steps
For $L_{f}>0$, the function f is L_{f}-smooth on a convex set C if

$$
(\forall \boldsymbol{x}, \boldsymbol{y} \in C) \quad f(\boldsymbol{y})-f(\boldsymbol{x}) \leqslant\langle\nabla f(\boldsymbol{x}) \mid \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{L_{f}}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2}
$$

For BCFW, this means

$$
f\left(\boldsymbol{x}_{t+1}\right)-f\left(\boldsymbol{x}_{t}\right) \leqslant \sum_{i \in I_{t}} \gamma_{t}^{i} \underbrace{\left\langle\nabla^{i} f\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right\rangle}_{-G_{i}\left(\boldsymbol{x}_{t}\right)}+\frac{L_{f}}{2}\left(\gamma_{t}^{i}\right)^{2}\left\|\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right\|^{2}
$$

To tighten the inequality, the stepsize

$$
\gamma_{t}^{i}=\underset{\gamma \in[0,1]}{\operatorname{Argmin}}\left(-\gamma G_{i}\left(\boldsymbol{x}_{t}\right)+\gamma^{2} \frac{L_{f}}{2}\left\|\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right\|^{2}\right)=\min \left\{\frac{G_{i}\left(\boldsymbol{x}_{t}\right)}{L_{f}\left\|\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right\|^{2}}, 1\right\}, \quad \text { (short) }
$$

is known as the componentwise short step.

Notation and Background

Smoothness and short-steps
For $L_{f}>0$, the function f is L_{f}-smooth on a convex set C if

$$
(\forall \boldsymbol{x}, \boldsymbol{y} \in C) \quad f(\boldsymbol{y})-f(\boldsymbol{x}) \leqslant\langle\nabla f(\boldsymbol{x}) \mid \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{L_{f}}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2}
$$

For BCFW, this means

$$
f\left(\boldsymbol{x}_{t+1}\right)-f\left(\boldsymbol{x}_{t}\right) \leqslant \sum_{i \in I_{t}} \gamma_{t}^{i} \underbrace{\left\langle\nabla^{i} f\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right\rangle}_{-G_{i}\left(\boldsymbol{x}_{t}\right)}+\frac{L_{f}}{2}\left(\gamma_{t}^{i}\right)^{2}\left\|\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right\|^{2}
$$

To tighten the inequality, the stepsize

$$
\gamma_{t}^{i}=\underset{\gamma \in[0,1]}{\operatorname{Argmin}}\left(-\gamma G_{i}\left(\boldsymbol{x}_{t}\right)+\gamma^{2} \frac{L_{f}}{2}\left\|\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right\|^{2}\right)=\min \left\{\frac{G_{i}\left(\boldsymbol{x}_{t}\right)}{L_{f}\left\|\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right\|^{2}}, 1\right\}, \quad \text { (short) }
$$

is known as the componentwise short step. Downside: requires upper-estimate of L_{f}.

Adaptive step-size algorithm for convex functions

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

Adaptive step-size algorithm for convex functions

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ_{t}^{i} based on an estimated the smoothness constant \widetilde{M}.

Adaptive step-size algorithm for convex functions

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ_{t}^{i} based on an estimated the smoothness constant \widetilde{M}.
2. If a desired inequality holds between \boldsymbol{x}_{t} and \boldsymbol{x}_{t+1} : done.

Adaptive step-size algorithm for convex functions

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ_{t}^{i} based on an estimated the smoothness constant \widetilde{M}.
2. If a desired inequality holds between \boldsymbol{x}_{t} and \boldsymbol{x}_{t+1} : done.
3. Else, increase $\widetilde{M} \leftarrow \tau \widetilde{M}$ by $\tau>1$ and recompute \boldsymbol{x}_{t+1} until the desired inequality holds.

Adaptive step-size algorithm for convex functions

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ_{t}^{i} based on an estimated the smoothness constant \widetilde{M}.
2. If a desired inequality holds between \boldsymbol{x}_{t} and \boldsymbol{x}_{t+1} : done.
3. Else, increase $\widetilde{M} \leftarrow \tau \widetilde{M}$ by $\tau>1$ and recompute \boldsymbol{x}_{t+1} until the desired inequality holds.
Pros: No a-priori knowledge of L_{f}; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Adaptive step-size algorithm for convex functions

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ_{t}^{i} based on an estimated the smoothness constant \widetilde{M}.
2. If a desired inequality holds between \boldsymbol{x}_{t} and \boldsymbol{x}_{t+1} : done.
3. Else, increase $\widetilde{M} \leftarrow \tau \widetilde{M}$ by $\tau>1$ and recompute \boldsymbol{x}_{t+1} until the desired inequality holds.
Pros: No a-priori knowledge of L_{f}; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan \& Luo, 2016)
Let f be convex and L_{f}-smooth. Then,

$$
\left(\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{N}\right) \quad f(\boldsymbol{x})-f(\boldsymbol{y})-\langle\nabla f(\boldsymbol{y}) \mid \boldsymbol{x}-\boldsymbol{y}\rangle \geqslant \frac{\|\nabla f(\boldsymbol{x})-\nabla f(\boldsymbol{y})\|^{2}}{2 L_{f}}
$$

Adaptive step-size algorithm for convex functions

Typical adaptive setup [Pedregosa et al., 2020], [Pokutta, 2023]:

1. Update γ_{t}^{i} based on an estimated the smoothness constant \widetilde{M}.
2. If $\left(2^{*}\right)$ holds between \boldsymbol{x}_{t} and \boldsymbol{x}_{t+1} : done.
3. Else, increase $\widetilde{M} \leftarrow \tau \widetilde{M}$ by $\tau>1$ and recompute x_{t+1} until (2*) holds.
Pros: No a-priori knowledge of L_{f}; sometimes we get larger steps.
Cons: Extra function and/or gradient evaluations.

Fact (Hazan \& Luo, 2016)

Let f be convex and L_{f}-smooth. Then, for \widetilde{M} sufficiently large,

$$
\begin{equation*}
f\left(\boldsymbol{x}_{t}\right)-f\left(\boldsymbol{x}_{t+1}\right)-\left\langle\nabla f\left(\boldsymbol{x}_{t+1}\right) \mid \boldsymbol{x}_{t}-\boldsymbol{x}_{t+1}\right\rangle \geqslant \frac{\left\|\nabla f\left(\boldsymbol{x}_{t}\right)-\nabla f\left(\boldsymbol{x}_{t+1}\right)\right\|^{2}}{2 \widetilde{M}} \tag{*}
\end{equation*}
$$

Progress lemma

Lemma (Progress bound via smoothness and convexity, short-step)
Let $X_{i \in I} C_{i} \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_{f}-smooth, let D be the diameter of $X_{i \in I} C_{i}$, and assume (\star). Let \boldsymbol{x}^{*} solve (1), and set $H_{t}=f\left(\boldsymbol{x}_{t}\right)-f\left(\boldsymbol{x}^{*}\right)$. Then

$$
\begin{gathered}
H_{t}-H_{t+K} \geqslant \begin{cases}H_{t}+A_{t}-\frac{K L_{f} D^{2}}{2}, & \text { if } H_{t}+A_{t} \geqslant K L_{f} D^{2} ; \\
\frac{\left(H_{t}+A_{t}\right)^{2}}{2 K L_{f} D^{2}}, & \text { if } H_{t}+A_{t} \leqslant K L_{f} D^{2}, \text { where }\end{cases} \\
A_{t}=\sum_{k=1}^{K-1} \underbrace{G I_{t+k-1} \cap\left(I_{t+k} \cup \cdots \cup I_{t+K-1}\right)}_{J_{k}}\left(x_{t+k}\right) \geqslant 0
\end{gathered}
$$

A_{t} describes partial F-W gaps for all re-activated components.

Progress lemma

Lemma (Progress bound via smoothness and convexity, short-step)
Let $X_{i \in I} C_{i} \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_{f}-smooth, let D be the diameter of $X_{i \in I} C_{i}$, and assume (\star). Let \boldsymbol{x}^{*} solve (1), and set $H_{t}=f\left(\boldsymbol{x}_{t}\right)-f\left(\boldsymbol{x}^{*}\right)$. Then

$$
H_{t}-H_{t+K} \geqslant \begin{cases}H_{t}+A_{t}-\frac{K L_{f} D^{2}}{2}, & \text { if } H_{t}+A_{t} \geqslant K L_{f} D^{2} \\ \frac{\left(H_{t}+A_{t}\right)^{2}}{2 K L_{f} D^{2}}, & \text { if } H_{t}+A_{t} \leqslant K L_{f} D^{2}, \text { where }\end{cases}
$$

$A_{t}=\sum_{k=1}^{K-1} \underbrace{G I_{t+k-1} \cap\left(I_{t+k} \cup \cdots \cup I_{t+K-1}\right)}_{J_{k}}\left(x_{t+k}\right) \geqslant \sum_{k=1}^{K-1} f\left(x_{t+k}\right)-\min _{\substack{x \in X_{i \in \prime} c_{i} \\ x^{\prime \backslash J_{k}=x_{t+k}^{\prime \backslash J_{k}}}}} f(x) \geqslant 0$.
A_{t} describes partial F-W gaps for all re-activated components.

Progress lemma

Lemma (Progress bound via smoothness and convexity, short-step)
Let $X_{i \in I} C_{i} \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_{f}-smooth, let D be the diameter of $X_{i \in I} C_{i}$, and assume (\star). Let \boldsymbol{x}^{*} solve (1), and set $H_{t}=f\left(\boldsymbol{x}_{t}\right)-f\left(\boldsymbol{x}^{*}\right)$. Then

$$
H_{t}-H_{t+K} \geqslant \begin{cases}H_{t}+A_{t}-\frac{K L_{f} D^{2}}{2}, & \text { if } H_{t}+A_{t} \geqslant K L_{f} D^{2} \\ \frac{\left(H_{t}+A_{t}\right)^{2}}{2 K L_{f} D^{2}}, & \text { if } H_{t}+A_{t} \leqslant K L_{f} D^{2}, \text { where }\end{cases}
$$

$A_{t}=\sum_{k=1}^{K-1} \underbrace{G I_{t+k-1} \cap\left(I_{t+k} \cup \cdots \cup I_{t+K-1}\right)}_{J_{k}}\left(x_{t+k}\right) \geqslant \sum_{k=1}^{K-1} f\left(x_{t+k}\right)-\min _{\substack{x \in X_{i \in \prime} c_{i} \\ x^{\wedge \backslash k} \backslash_{t+k}^{\prime \backslash J_{k}}}} f(x) \geqslant 0$.
A_{t} may explain good behavior in experiments.

Progress lemma

Lemma (Progress bound via smoothness and convexity, short-step)
Let $X_{i \in I} C_{i} \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_{f}-smooth, let D be the diameter of $X_{i \in I} C_{i}$, and assume (\star). Let \boldsymbol{x}^{*} solve (1), and set $H_{t}=f\left(\boldsymbol{x}_{t}\right)-f\left(\boldsymbol{x}^{*}\right)$. Then

$$
H_{t}-H_{t+K} \geqslant \begin{cases}H_{t}+A_{t}-\frac{K L_{f} D^{2}}{2}, & \text { if } H_{t}+A_{t} \geqslant K L_{f} D^{2} \\ \frac{\left(H_{t}+A_{t}\right)^{2}}{2 K L_{f} D^{2}}, & \text { if } H_{t}+A_{t} \leqslant K L_{f} D^{2}, \text { where }\end{cases}
$$

$A_{t}=\sum_{k=1}^{K-1} \underbrace{G I_{t+k-1} \cap\left(I_{t+k} \cup \cdots \cup I_{t+K-1}\right)}_{J_{k}}\left(x_{t+k}\right) \geqslant \sum_{k=1}^{K-1} f\left(x_{t+k}\right)-\min _{\substack{x \in X_{i \in \prime} c_{i} \\ x^{\wedge \backslash k} \backslash_{t+k}^{\prime \backslash J_{k}}}} f(x) \geqslant 0$.

We don't know how to leverage $A_{t} s$ for an improved rate!

Progress lemma

Lemma (Progress bound via smoothness and convexity, adaptive step size strategy)
Let $X_{i \in I} C_{i} \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_{f}-smooth, let D be the diameter of $X_{i \in I} C_{i}$, let $0<\eta \leqslant 1<\tau$ and $M_{0}>0$, and assume (\star). Let \boldsymbol{x}^{*} solve (1), and set $H_{t}=f\left(\boldsymbol{x}_{t}\right)-f\left(\boldsymbol{x}^{*}\right)$. Then

$$
\begin{aligned}
& H_{t}-H_{t+K} \geqslant \begin{cases}H_{t}+A_{t}-\frac{K \max \left\{\eta^{t} M_{0}, \tau L_{f}\right\} D^{2}}{2}, & \text { if } H_{t}+A_{t} \geqslant K \max \left\{\eta^{t} M_{0}, \tau L_{f}\right\} D^{2} ; \\
\frac{\left(H_{t}+A_{t}\right)^{2}}{2 K \max \left\{\eta^{t} M_{0}, \tau L_{f}\right\} D^{2}}, & \text { if } H_{t}+A_{t} \leqslant K \max \left\{\eta^{t} M_{0}, \tau L_{f}\right\} D^{2},\end{cases} \\
& A_{t}=\sum_{k=1}^{K-1} \underbrace{G I_{t+k-1} \cap\left(I_{t+k} \cup \cdots \cup I_{t+K-1}\right)}_{J_{k}}\left(x_{t+k}\right) \geqslant \sum_{k=1}^{K-1} f\left(x_{t+k}\right)-\min _{\substack{x \in X_{i \in \prime} c_{i} \\
x^{\wedge} \backslash J_{k}=x_{t+k} \backslash J_{k}}} f(x) \geqslant 0 .
\end{aligned}
$$

A_{t} describes partial F-W gaps for all re-activated components.

Convex setting: flexible stepsizes

Theorem

Let $X_{i \in I} C_{i} \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_{f}-smooth, let $\tau>1 \geqslant \eta$ and $M_{0}>0$ be approximation parameters, let D be the diameter of $X_{i \in 1} C_{i}$, let $x_{0} \in \mathbb{R}^{N}$, let \boldsymbol{x}^{*} solve (1), and assume (\star). Set $n_{0}:=\max \left\{\left\lceil\log \left(\tau L_{f} /\left(\eta M_{0}\right)\right) /(K \log \eta)\right\rceil, 0\right\}$. Then,
$f\left(\boldsymbol{x}_{n K}\right)-f\left(\boldsymbol{x}^{*}\right) \leqslant \begin{cases}\min _{0 \leqslant p \leqslant n-1}\left\{\frac{K \eta^{p K} M_{0} D^{2}}{2}-A_{p K}\right\} & \text { if } 1 \leqslant n \leqslant n_{0}+1 \\ \frac{2 K \tau L_{f} D^{2}}{n-n_{0}+\sum_{p=n_{0}}^{n} \frac{2 A_{p K}}{f\left(x_{n_{0}}\right)-f\left(x^{*}\right)}+\left(\frac{A_{p K}}{f\left(x_{n_{0}}\right)-f\left(x^{*}\right)}\right)^{2}} & \text { if } n>n_{0}+1 .\end{cases}$
After t iterations, Adaptive-BCFW has evaluated f and ∇f at-most $2+\left\lceil\log _{\tau}\left(L_{f} / \eta^{t} M_{0}\right)\right\rceil$ times.

Convex setting: flexible stepsizes

Theorem

Let $X_{i \in I} C_{i} \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_{f}-smooth, let $\tau>1 \geqslant \eta$ and $M_{0}>0$ be approximation parameters, let D be the diameter of $X_{i \in 1} C_{i}$, let $x_{0} \in \mathbb{R}^{N}$, let \boldsymbol{x}^{*} solve (1), and assume (\star). Set $n_{0}:=\max \left\{\left\lceil\log \left(\tau L_{f} /\left(\eta M_{0}\right)\right) /(K \log \eta)\right\rceil, 0\right\}$. Then,
$f\left(\boldsymbol{x}_{n K}\right)-f\left(\boldsymbol{x}^{*}\right) \leqslant \begin{cases}\min _{0 \leqslant p \leqslant n-1}\left\{\frac{K \eta^{p K} M_{0} D^{2}}{2}-A_{p K}\right\} & \text { if } 1 \leqslant n \leqslant n_{0}+1 \\ \frac{2 K \tau L_{f} D^{2}}{n-n_{0}+\sum_{p=n_{0}}^{n} \frac{2 A_{p K}}{f\left(x_{n_{0}}\right)-f\left(x^{*}\right)}+\left(\frac{A_{p K}}{f\left(x_{n_{0}}\right)-f\left(x^{*}\right)}\right)^{2}} & \text { if } n>n_{0}+1 .\end{cases}$
After t iterations, Adaptive-BCFW has evaluated f and ∇f at-most $2+\left\lceil\log _{\tau}\left(L_{f} / \eta^{t} M_{0}\right)\right\rceil$ times.
\rightarrow After t iterations, matches $\mathcal{O}(K / t)$ rate for convex cyclic setting

Corollary: Parallelized short-step BCFW

Corollary

Let $X_{i \in I} C_{i} \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_{f}-smooth, let D be the diameter of $X_{i \in I} C_{i}$, let \boldsymbol{x}^{*} solve (1), and assume (\star). Then,

$$
(\forall n \in \mathbb{N}) \quad f\left(x_{n K}\right)-f\left(x^{*}\right) \leqslant \begin{cases}\frac{K L_{f} D^{2}}{2}-A_{0} & \text { if } n=1 \\ \frac{2 K L_{f} D^{2}}{n-1+\sum_{p=1}^{n} \frac{2 A_{p K}}{f\left(x_{1}\right)-f\left(x^{*}\right)}+\left(\frac{A_{p K}}{f\left(x_{1}\right)-f\left(x^{*}\right)}\right)^{2}} & \text { if } n \geqslant 2 .\end{cases}
$$

Furthermore, Short-step BCFW requires one gradient evaluation per iteration.

Corollary: Parallelized short-step BCFW

Corollary

Let $X_{i \in I} C_{i} \subset \mathcal{H}$ be a product of m nonempty compact convex sets, let f be convex and L_{f}-smooth, let D be the diameter of $X_{i \in I} C_{i}$, let \boldsymbol{x}^{*} solve (1), and assume (\star). Then,

$$
(\forall n \in \mathbb{N}) \quad f\left(x_{n K}\right)-f\left(x^{*}\right) \leqslant \begin{cases}\frac{K L_{f} D^{2}}{2}-A_{0} & \text { if } n=1 \\ \frac{2 K L_{f} D^{2}}{n-1+\sum_{p=1}^{n} \frac{2 A_{p K}}{f\left(x_{1}\right)-f\left(x^{*}\right)}+\left(\frac{A_{p K}}{f\left(x_{1}\right)-f\left(x^{*}\right)}\right)^{2}} & \text { if } n \geqslant 2 .\end{cases}
$$

Furthermore, Short-step BCFW requires one gradient evaluation per iteration.
\rightarrow Matches rate and constant for non-block Short-step FW.
\rightarrow Easier to parallelize than Adaptive BCFW.

Nonconvex convergence

Theorem (Nonconvex convergence)
Let $X_{i \in I} C_{i} \subset \mathcal{H}$ be a product of m nonempty compact convex sets with diameter D. Let ∇f be L_{f}-Lipschitz continuous on $X_{i \in I} C_{i}$, set $H_{0}=f\left(x_{0}\right)-\inf f\left(X_{i \in I} C_{i}\right)$. Suppose that (\star) holds. Then, for every $n \in \mathbb{N}$, Short-step BCFW guarantees

$$
\min _{0 \leqslant p \leqslant n-1} G_{l}\left(\boldsymbol{x}_{p K}\right) \leqslant \frac{1}{n} \sum_{p=0}^{n-1} G_{l}\left(\boldsymbol{x}_{p K}\right) \leqslant \begin{cases}\frac{2 H_{0}-\sum_{p=0}^{n-1} A_{p K}}{n}+\frac{K L_{f} D^{2}}{2} & \text { if } n \leqslant \frac{2 H_{0}}{K L_{f} D^{2}} \\ 2 D \sqrt{\frac{H_{0} K L_{f}}{n}}-\frac{\sum_{p=0}^{n-1} A_{p K}}{n} & \text { otherwise }\end{cases}
$$

In particular, there exists a subsequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ such that $G_{I}\left(x_{n_{k}} K\right) \rightarrow 0$, and every accumulation point of $\left(\boldsymbol{x}_{n_{k} K}\right)_{k \in \mathbb{N}}$ is a stationary point of (1).
\rightarrow Reactivated gap terms reappear!

Nonconvex convergence

Theorem (Nonconvex convergence)
Let $X_{i \in I} C_{i} \subset \mathcal{H}$ be a product of m nonempty compact convex sets with diameter D. Let ∇f be L_{f}-Lipschitz continuous on $X_{i \in I} C_{i}$, set $H_{0}=f\left(x_{0}\right)-\inf f\left(X_{i \in I} C_{i}\right)$. Suppose that (\star) holds. Then, for every $n \in \mathbb{N}$, Short-step BCFW guarantees

$$
\min _{0 \leqslant p \leqslant n-1} G_{l}\left(x_{p K}\right) \leqslant \frac{1}{n} \sum_{p=0}^{n-1} G_{l}\left(x_{p K}\right) \leqslant \begin{cases}\frac{2 H_{0}-\sum_{p=0}^{n-1} A_{p K}}{n}+\frac{K L_{f} D^{2}}{2} & \text { if } n \leqslant \frac{2 H_{0}}{K L_{f} D^{2}} \\ 2 D \sqrt{\frac{H_{0} K L_{f}}{n}}-\frac{\sum_{p=0}^{n-1} A_{p K}}{n} & \text { otherwise }\end{cases}
$$

In particular, there exists a subsequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ such that $G_{l}\left(x_{n_{k}} K\right) \rightarrow 0$, and every accumulation point of $\left(\boldsymbol{x}_{n_{k} K}\right)_{k \in \mathbb{N}}$ is a stationary point of (1).
\rightarrow Reactivated gap terms reappear!
\rightarrow After t iterations, minimal F-W gap converges like $\mathcal{O}(K / \sqrt{t})$.

Flexible Block-Coordinate Frank-Wolfe Algorithm

1. Motivation
2. Our approach
3. Analysis
4. Numerical experiments

Experiments

Toy intersection problem (convex)
Find a matrix in the intersection of the spectrahedron $C_{1}=\left\{X \in \mathbb{S}_{+}^{r \times r} \mid \operatorname{Trace}(X)=1\right\}$ and the hypercube $C_{2}=[-5, \mu]^{r \times r}(\mu=1 / r)$.

$$
\operatorname{minimize}_{x \in C_{1} \times C_{2}} \frac{1}{2}\left\|x^{1}-x^{2}\right\|^{2}
$$

Experiments

Toy intersection problem (convex)
Find a matrix in the intersection of the spectrahedron $C_{1}=\left\{X \in \mathbb{S}_{+}^{r \times r} \mid \operatorname{Trace}(X)=1\right\}$ and the hypercube $C_{2}=[-5, \mu]^{r \times r}(\mu=1 / r)$.

$$
\operatorname{minimize}_{x \in C_{1} \times C_{2}} \frac{1}{2}\left\|x^{1}-\boldsymbol{x}^{2}\right\|^{2}
$$

$\rightarrow \mathrm{LMO}_{C_{1}}$ is far more expensive than $\mathrm{LMO}_{C_{2}}$.
\rightarrow We use Short-step BCFW to compare the following block activations: full, cyclic, permuted-cyclic, and " q-lazy":

$$
(\forall t \in \mathbb{N}) \quad I_{t}= \begin{cases}\{1,2\} & \text { if } t \equiv 0 \bmod \quad q \tag{q-Lazy}\\ \{2\} & \text { otherwise }\end{cases}
$$

Experiments

Toy intersection problem (convex)
comparing block-activations: full, cyclic, permuted-cyclic, and

$$
\underset{x \in C_{1} \times C_{2}}{\operatorname{minimize}} \frac{1}{2}\left\|x^{1}-x^{2}\right\|^{2}
$$

$$
(\forall t \in \mathbb{N}) \quad I_{t}=\left\{\begin{array}{ll}
\{1,2\} & \text { if } t \equiv 0 \bmod \quad q ; \\
\{1\} & \text { otherwise } .
\end{array} \quad(q \text {-lazy })\right.
$$

(a) $r=100$

(b) $r=300$

(c) $r=500$

Experiments

Toy intersection problem (convex)
comparing block-activations: full, cyclic, permuted-cyclic, and

$$
\underset{x \in C_{1} \times C_{2}}{\operatorname{minimize}} \frac{1}{2}\left\|x^{1}-x^{2}\right\|^{2}
$$

$$
(\forall t \in \mathbb{N}) \quad I_{t}=\left\{\begin{array}{ll}
\{1,2\} & \text { if } t \equiv 0 \bmod q ; \\
\{1\} & \text { otherwise } .
\end{array} \quad(q \text {-lazy })\right.
$$

(d) $r=100$

(e) $r=300$

(f) $r=500$

Experiments

Toy intersection problem (convex)
comparing block-activations: full, cyclic, permuted-cyclic, and
$\underset{x \in C_{1} \times C_{2}}{\operatorname{minimize}} \frac{1}{2}\left\|\boldsymbol{x}^{1}-\boldsymbol{x}^{2}\right\|^{2}$

$$
(\forall t \in \mathbb{N}) \quad I_{t}=\left\{\begin{array}{ll}
\{1,2\} & \text { if } t \equiv 0 \bmod q ; \\
\{1\} & \text { otherwise } .
\end{array} \quad(q \text {-lazy })\right.
$$

Experiments

Toy Difference-of-Convex quadratic problem
Find a $2 r \times r$ matrix such that its first $r \times r$ submatrix satisfies $\|X\|_{\infty} \leqslant 1$, and its second submatrix satisfies $\|X\|_{\text {nuc }} \leqslant 1$. To investigate BCFW when the number of components is large, we set $C_{1}=\ldots=C_{r}=\left\{x \in \mathbb{R}^{r} \mid\|x\|_{\infty} \leqslant 1\right\}$ and $C_{r+1}=\left\{X \in \mathbb{R}^{r \times r} \mid\|X\|_{\text {nuc }} \leqslant 1\right\}$. For PSD $2 r \times r$ matrices A and B, we seek to solve

$$
\operatorname{minimize}_{x \in}^{\substack{x \\ 1 \leqslant i \leqslant r+1}} C_{i}\langle[x] \mid[x] A\rangle-\langle[x] \mid[x] B\rangle
$$

\rightarrow For each instance, we verify $A-B$ is indefinite.
\rightarrow Problem is nonseparable

Experiments

Toy Difference-of-Convex quadratic problem
$\rightarrow \mathrm{LMO}_{c_{r+1}}$ is far more expensive than $\left(\mathrm{LMO}_{c_{i}}\right)_{1 \leqslant i \leqslant r}$.
\rightarrow We use Short-step BCFW to compare the following block activations: full, cyclic, permuted-cyclic, and " (p, q)-lazy":

$$
(\forall t \in \mathbb{N}) \quad I_{t}= \begin{cases}l & \text { if } t \equiv 0 \quad(\bmod q) \quad((p, q) \text {-Lazy }) \\ \left\{i_{1}, \ldots, i_{p}\right\} \subset_{R} \backslash \backslash\{r+1\} & \text { otherwise. }\end{cases}
$$

Full update every q iterations; otherwise, update a random subset of p "cheap" coordinates in parallel.

Experiments

Toy Difference-of-Convex quadratic problem
comparing full, cyclic, perm.-cyclic, and " (p, q)-lazy":

$$
\operatorname{minimize}_{x \in}^{\lim _{1 \leqslant i \leqslant r+1}}\langle[x] \mid[x] A\rangle-\langle[x] \mid[x] B\rangle \quad \quad I_{t}= \begin{cases}I & \text { if } t \equiv 0(\bmod q) \\ \left\{i_{1}, \ldots, i_{p}\right\} \subset_{R} I \backslash\{r+1\} & \text { otherwise }\end{cases}
$$

(j) $r=100$

(k) $r=300$

(I) $r=500$

Experiments

Toy Difference-of-Convex quadratic problem
comparing full, cyclic, perm.-cyclic, and " (p, q)-lazy":

$$
\operatorname{minimize}_{x \in \underset{1 \leqslant i \leqslant r+1}{x} C_{i}}^{\operatorname{cin}_{1}}\langle[x] \mid[x] A\rangle-\langle[x] \mid[x] B\rangle
$$

$$
I_{t}= \begin{cases}I & \text { if } t \equiv 0(\bmod q) \\ \left\{i_{1}, \ldots, i_{p}\right\} \subset_{R} I \backslash\{r+1\} & \text { otherwise }\end{cases}
$$

(m) $r=100$

(n) $r=300$

(o) $r=500$

Experiments

Toy Difference-of-Convex quadratic problem
comparing full, cyclic, perm.-cyclic, and " (p, q)-lazy":
$\underset{x \in}{\substack{1 \leqslant i \leqslant r+1}} \operatorname{Cinimize}_{C_{i}}\langle[x] \mid[x] A\rangle-\langle[x] \mid[x] B\rangle$

$$
I_{t}= \begin{cases}l & \text { if } t \equiv 0(\bmod q) \\ \left\{i_{1}, \ldots, i_{p}\right\} \subset_{R} J \backslash\{r+1\} & \text { otherwise }\end{cases}
$$

(p) $r=100$

(q) $r=300$

(r) $r=500$

Conclusion

Draft can be found here:

https://zevwoodstock.github.io/media/publications/block.pdf

Contact: woodstock@zib.de or woodstzc@jmu.edu

Thank you for your attention!

References

A．Beck，E．Pauwels，and S．Sabach，The cyclic block conditional gradient method for convex optimization problems
SIAM J．Optim．，vol．25，no．4，pp．2024－2049， 2015
C．Combettes and S．Pokutta，Complexity of linear minimization and projection on some sets Oper．Res．Lett．，vol．49，no．4，pp．565－571， 2021
P．L．Combettes and ZW，Signal recovery from inconsistent nonlinear observations Proc．IEEE Int．Conf．Acoust．Speech Signal Process．，pp 5872－5876， 2022.

P．L．Combettes and ZW，A variational inequality model for the construction of signals from inconsistent nonlinear equations
SIAM J．Imaging Sci．，vol．15，no．1，pp．84－109， 2022
M．Frank and P．Wolfe，An algorithm for quadratic programming
Naval Res．Logist．Quart．，vol．3，iss．1－2，pp．95－110， 1956

藸
E．Hazan and H．Luo，Variance－Reduced and Projection－Free Stochastic Optimization Proc．ICML，vol．48，pp．1263－1271， 2016

References

C．T．Kelley，Iterative Methods for Linear and Nonlinear Equations
SIAM，Philadelphia， 1995.
S．Lacoste－Julien，M．Jaggi，M．Schmidt，P．Pletscher，Block－Coordinate Frank－Wolfe Optimization for Structural SVMs
Proc．ICML，vol．28，pp．53－61， 2013
A．Osokin，J．－B．Alayrac，I．Lukasewitz，P．Dokania，S．Lacoste－Julien，Minding the Gaps for Block Frank－Wolfe Optimization of Structured SVMs
Proc．ICML，vol．48，pp．593－602， 2016
N．Ottavy，Strong convergence of projection－like methods in Hilbert spaces
J．Optim．Theory Appl．，vol．56，pp．433－461， 1988M．Patriksson，Decomposition methods for differentiable optimization problems over Cartesian product sets
Comput．Optim．Appl．，vol．9，pp．5－42， 1998

References

F．Pedregosa，G．Negiar，A．Askari，and M．Jaggi，Linearly convergent Frank－Wolfe with backtracking line－searchICML，pp．1－10， 2020
S．Pokutta，The Frank－Wolfe Algorithm：a Short Introduction
Jahresber．Dtsch．Math．－Ver．，vol．126，pp．3－35， 2024
國 V．E．Shamanskii，A modification of Newton＇s method Ukran．Mat．Zh．，vol．19，pp．133－138， 1967 （in Russian）
國 Y．－X．Wang，V．Sadhanala，W．Dai，W．Neiswanger，S．Sra，E．Xing，Parallel and Distributed Block－Coordinate Frank－Wolfe Algorithms
Proc．ICML，vol．48，pp．1548－1557， 2016
國 ZW and S．Pokutta，Splitting the conditional gradient algorithm arXiv：2311．05381， 2024

[^0]: *- also James Madison University starting Aug. 2024

