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1 « Motivation



Setting

Notation: 7 is a real Hilbert space with inner product, (- | -) and induced norm || - ||.

C is a nonempty compact convex subset of 7.

Consider two operations w.r.t. C: projection and linear minimization oracle

proj(x) = Argmin ||x — v||? LMO¢(x) € Argmin (x | v). (1)
veC veC

Let's race them.
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... But why?

This will help us perform per-iteration complexity comparisons between two very large
families of first-order algorithms: Projection methods and Frank-Wolfe, (AKA
Conditional Gradient) methods.
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... But why?
This will help us perform per-iteration complexity comparisons between two very large

families of first-order algorithms: Projection methods and Frank-Wolfe, (AKA
Conditional Gradient) methods.

Many works (e.g., [C. Combettes & Pokutta, 2021], [Dunn & Harshbarger, 1978],
[Garber, Kaplan, & Sabach, 2021], ...) have established that (especially when dim H
is high), LMO is currently faster than proj on a variety of set classes C:

LMO-advantaged sets: nuclear norm ball, /1 ball, probability simplex, Birkhoff
polytope, general LP, ....

Open question: Is there a compact convex C that is not “LMO-advantaged”?



Complexity / Definitions

For € > 0, an e-approximate LMO of x is a point v € C such that

0<(v|x)—min{(c|x) <e.
ceC

At times, it will be convenient to use the set-valued notation

LMO¢(x) = Argmin (x | v) C H
veC



Complexity / Definitions

For € > 0, an e-approximate LMO of x is a point v € C such that

0<(v|x)—min{(c|x) <e.
ceC

At times, it will be convenient to use the set-valued notation

LMO¢(x) = Argmin (x | v) C H
veC

Assumption 1: Suppose that projection and e-approximate linear minimization can be
performed over C using finitely many vector-arithmetic operations. Let P and L(¢)
respectively denote the smallest amount of operations required.*

*. Black-box complexity model may be easier; article under revision.
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Gameplan

Approximate LMO¢(x) using one evaluation of proj.; carefully manage the error.

Two results:

1. Fore >0
“Optimal cost of e-LMQO" < "Optimal cost of projection”

2. If C is polyhedral:
“Optimal cost of exact LMQO" < “Optimal cost of projection”
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Geometry

A

Geometric concept (similar to
[Mortagy, Gupta, & Pokutta,
2023))

projc(—Ax) ~ LMO¢(x).

Q: What explicit A is needed to
guarantee proj(—Ax) is an
g-approximate LMO?
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Let C C H be a nonempty compact convex set. Then, for every x € H,

projc x € LMO¢(projc x — x). (2)

[note]: Depending on your selection (single-valued implementation) of LMO¢, (2)
might not hold with equality!
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Proposition

Let C C H be a nonempty compact convex set. Then, for every x € H,

projc x € LMO¢(projc x — x). (2)

veC
VzeH) veLMOc(z) = Argmi & 3
(Vz ) v c(2) rcgeném(z|c) igg(—z\c—v)SO. (3)
. peC
p:prOJCX<:>X_P€NCp<:> Sup<X—p|C—p><0 (4)
ceC

Setting z = projc x — x in (3), we see from (4) that proj(x) solves (3). O
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From the proposition,

projc(—Ax) € Argmin (c | projc(—Ax) + Ax). (5)
ceC

So, for any v € LMO¢(x),

{projc(=Ax) [ projc(=Ax) + Ax) < (v | projc(=Ax) + Ax). (6)

10



Results
0000@000

From the proposition,

projc(—Ax) € Argmin (c | projc(—Ax) + Ax). (5)
ceC

So, for any v € LMO¢(x),
{projc(=Ax) [ projc(=Ax) + Ax) < (v | projc(—Ax) + Ax). (6)

Dividing by A, rearranging, and using norm inequalities

10



Results
0000@000

From the proposition,

projc(—Ax) € Argmin (c | projc(—Ax) + Ax). (5)
ceC

So, for any v € LMO¢(x),
{projc(=Ax) [ projc(=Ax) + Ax) < (v | projc(—Ax) + Ax). (6)
Dividing by A, rearranging, and using norm inequalities

{projc(=Ax) | x) = (v | x) S AH({v | proj(—=Ax)) — [l projc(=Ax)IP)  (7)

10



Results
0000@000

From the proposition,

projc(—Ax) € Argmin (c | projc(—Ax) + Ax). (5)
ceC

So, for any v € LMO¢(x),
{projc(=Ax) [ projc(=Ax) + Ax) < (v | projc(—Ax) + Ax). (6)
Dividing by A, rearranging, and using norm inequalities

0 <{projc(=Ax) | x) — (v | x) S ATH({v | proj(—=Ax)) — [ projc(=Ax)[IP) — (7)

10



Results
0000@000

From the proposition,

projc(—Ax) € Argmin (c | projc(—Ax) + Ax). (5)
ceC

So, for any v € LMO¢(x),
{projc(=Ax) [ projc(=Ax) + Ax) < (v | projc(—Ax) + Ax). (6)
Dividing by A, rearranging, and using norm inequalities

0 < (projc(—Ax) | x) = (v | x) S ATH({v | projc(—=Ax)) — [ projc(=Ax)IIP)  (7)
<A proje (= Ax)I = [l projc (=A%) (8)
= A" projc (=) | (VI = [l proje (=) (%)

10



Results
0000@000

From the proposition,

projc(—Ax) € Argmin (c | projc(—Ax) + Ax). (5)
ceC

So, for any v € LMO¢(x),
{projc(=Ax) | projc(=Ax) + Ax) < (v | projc(—=Ax) + Ax). (6)
Dividing by A, rearranging, and using norm inequalities
0 < (projc(—Ax) | x) = (v | x) S ATH({v | projc(—=Ax)) — [ projc(=Ax)IIP)  (7)
<A proje (= Ax)I = [l projc (=A%) (8)

= A" projc (=) | (VI = [l proje (=) (%)

<A projc(=M)[lv = proje(~Ax)| ;



Results
0000@000

From the proposition,

projc(—Ax) € Argmin (c | projc(—Ax) + Ax). (5)
ceC

So, for any v € LMO¢(x),

{projc(=Ax) [ projc(=Ax) + Ax) < (v | projc(—Ax) + Ax). (6)
Set d¢ = sup(¢, )ec2 llar — 2| = 0 and pic = supcec e = 0.
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From the proposition,
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ceC
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Theorem (Projection as Approximate LMO: Explicit error bound; W. 2025)

Let x € H and let C be a nonempty, compact, and convex subset of 7 with diameter

d¢ = SUP(¢,)ec2 e — c2|| = 0 and bound fic = supccc || c|l = 0. Then, for every
A > 0 and every v € LMO¢(x),

0 < (proje(~x) | x) — min (e | x) < PPN oy e (an)). (o)

In consequence, we have || projc(—Ax)|| < ||v|| and for every € > 0,

A min {dcpc, pz}
£

> 0 {projc(—M) [x) —minc | x) <& (9)

11



Results
00000800

Theorem (Projection as Approximate LMO: Explicit error bound; W. 2025)

Let x € H and let C be a nonempty, compact, and convex subset of 7 with diameter
d¢ = SUP(¢,)ec2 e — c2|| = 0 and bound fic = supccc || c|l = 0. Then, for every
A > 0 and every v € LMO¢(x),

0 < (proje(~x) | x) — min (e | x) < PPN oy e (an)). (o)

In consequence, we have || proj(—Ax)|| < ||v|| and for every € > 0,

min {dcpc, pz}
€

A>

> 0 {projc(—M) [x) —minc | x) <& (9)

If projc(—A*x) € LMOc¢(x), then it is the minimal-norm element of LMO ¢(x). .
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Corollary (Projection is no faster than approximate LMO)

Let € > 0 and suppose that Assumption 1 holds. Then P+ 1 > L(g). In consequence,
if P> 1, we also have

O(P) = O(L(¢))

L(e) is bounded above by the cost of evaluating proj-(—Ax) which is P + 1. O
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Corollary (Projection is no faster than approximate LMO)

Let € > 0 and suppose that Assumption 1 holds. Then P+ 1 > L(g). In consequence,
if P> 1, we also have

S
=
Y
~
=
2

Proof.
L(e) is bounded above by the cost of evaluating proj-(—Ax) which is P + 1. O

Drawbacks:

= For some sets, € \, 0 means \ " +0o0, so this result cannot be used to compare
exact LMO to exact projection in general.

= What about comparing exact LMO to exact projection?



What about exact LMO?
Is there a finite \* such that proj(—A*x) € LMO¢(x)?

13



What about exact LMO?
Is there a finite \* such that proj(—A*x) € LMO¢(x)?

Proposition (Projection is no faster than exact LMO on polyhedral sets; W. 2025)
Let x € R” = ‘H and suppose that C C H is compact, convex, and polyhedral. Then

there exists a finite value A* > 0 such that projc(—A*x) € LMOc¢(x). Further, if
Assumption 1 holds, then P 4+ 1 > L(0); if P > 1, then O(P) > O(L(0)).

13



What about exact LMO?
Is there a finite \* such that proj(—A*x) € LMO¢(x)?

Proposition (Projection is no faster than exact LMO on polyhedral sets; W. 2025)

Let x € R” = ‘H and suppose that C C H is compact, convex, and polyhedral. Then
there exists a finite value A* > 0 such that projc(—A*x) € LMOc¢(x). Further, if
Assumption 1 holds, then P 4+ 1 > L(0); if P > 1, then O(P) > O(L(0)).

Proof idea: Partial dualization + strong duality argument, a la [Geoffrion, 1971] (and
[Theorem 11.5, Giiler, 2010]): there exists \* > 0 such that (w/ v = minyec (v | x))

1 1
oo 0) = mininie 5 lzl? = Argmin Sl + X (x| 2) ~v)
Z|xX)<v

1
= Argmin §|| — M x — z[|2 = projc(—\*x)

zeC 13



What about exact LMO?
Is there a finite \* such that proj(—A*x) € LMO¢(x)?

Proposition (Projection is no faster than exact LMO on polyhedral sets; W. 2025)

Let x € R” = ‘H and suppose that C C H is compact, convex, and polyhedral. Then
there exists a finite value A* > 0 such that projc(—A*x) € LMOc¢(x). Further, if
Assumption 1 holds, then P 4+ 1 > L(0); if P > 1, then O(P) > O(L(0)).

Proof idea: Partial dualization + strong duality argument, a la [Geoffrion, 1971] (and
[Theorem 11.5, Giiler, 2010]): there exists \* > 0 such that (w/ v = minyec (v | x))

1 1
LMOc(x) 3 proj_mo(x)(0) = minimize ~||z|I? = Argmin Z||z|]2 + X\ ((x | z) — v)
oz =ec 2

1
= Argmin §|| — Mx — z||2 = projc(—\*x)

zeC 13



Conclusion & more questions
®0

Linear Minimization v. Projections: Which is faster?

3. Conclusion & more questions



Conclusion & more questions
oe

Recap

= All compact convex sets satisfy O(P) > O(L(¢)) for € > 0 (This cannot yield a
result on comparison with L(0) in general — some sets require A  4+00)
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oe
Recap

= All compact convex sets satisfy O(P) > O(L(¢)) for € > 0 (This cannot yield a
result on comparison with L(0) in general — some sets require A * +00)
= Polyhedral sets satisfy O(P) > O(L(0)).
= Current evidence suggests O(P) > O(L(0)) for nuclear norm ball, #=H-
il Biekhoff ' Lp
Open question:

Does there exist any nonempty compact convex set such that P < L(0)?
My guess: “no” if dim H is finite
Contact: woodstzc[at] jmu.edu

Preprint (Currently under revision):
15
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