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Setting
Notation: H is a real Hilbert space with inner product, 〈· | ·〉 and induced norm ‖ · ‖.

C is a nonempty compact convex subset of H.

Consider two operations w.r.t. C : projection and linear minimization oracle

projC (x) = Argmin
v∈C

‖x − v‖2 LMOC (x) ∈ Argmin
v∈C

〈x | v〉. (1)

Let’s race them.

image: Meta AI
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. . . But why?

This will help us perform per-iteration complexity comparisons between two very large
families of first-order algorithms: Projection methods and Frank-Wolfe, (AKA
Conditional Gradient) methods.

Many works (e.g., [C. Combettes & Pokutta, 2021], [Dunn & Harshbarger, 1978],
[Garber, Kaplan, & Sabach, 2021], . . . ) have established that (especially when dimH
is high), LMO is currently faster than proj on a variety of set classes C :

LMO-advantaged sets: nuclear norm ball, `1 ball, probability simplex, Birkhoff
polytope, general LP, . . . .

Open question: Is there a compact convex C that is not “LMO-advantaged”?
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Complexity / Definitions
For ε > 0, an ε-approximate LMO of x is a point v ∈ C such that

0 6 〈v | x〉 −min
c∈C
〈c | x〉 6 ε.

At times, it will be convenient to use the set-valued notation

LMOC (x) = Argmin
v∈C

〈x | v〉 ⊂ H

Assumption 1: Suppose that projection and ε-approximate linear minimization can be
performed over C using finitely many vector-arithmetic operations. Let P and L(ε)
respectively denote the smallest amount of operations required.∗
[note] For most sets C , we do not know P and L(ε)

*: Black-box complexity model may be easier; article under revision.
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Gameplan

Approximate LMOC (x) using one evaluation of projC ; carefully manage the error.

Two results:
1. For ε > 0

“Optimal cost of ε-LMO” 6 “Optimal cost of projection”

2. If C is polyhedral:
“Optimal cost of exact LMO” 6 “Optimal cost of projection”
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Geometry

x

v ∈ LMOC(x)

−λx

ProjC(−λx)

C

Geometric concept (similar to
[Mortagy, Gupta, & Pokutta,
2023])

projC (−λx) ≈ LMOC (x).

Q: What explicit λ is needed to
guarantee projC (−λx) is an
ε-approximate LMO?
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Proposition

Let C ⊂ H be a nonempty compact convex set. Then, for every x ∈ H,

projC x ∈ LMOC (projC x − x). (2)

[note]: Depending on your selection (single-valued implementation) of LMOC , (2)
might not hold with equality!
Proof.

(∀z ∈ H) v ∈ LMOC (z) = Argmin
c∈C

〈z | c〉 ⇔

v ∈ C
sup
c∈C
〈−z | c − v〉 6 0. (3)

p = projC x ⇔ x − p ∈ NCp ⇔

p ∈ C
sup
c∈C
〈x − p | c − p〉 6 0. (4)

Setting z = projC x − x in (3), we see from (4) that projC (x) solves (3).



9

Motivation Results Conclusion & more questions References

Proposition

Let C ⊂ H be a nonempty compact convex set. Then, for every x ∈ H,

projC x ∈ LMOC (projC x − x). (2)

Proof.

(∀z ∈ H) v ∈ LMOC (z) = Argmin
c∈C

〈z | c〉 ⇔

v ∈ C
sup
c∈C
〈−z | c − v〉 6 0. (3)

p = projC x ⇔ x − p ∈ NCp ⇔

p ∈ C
sup
c∈C
〈x − p | c − p〉 6 0. (4)

Setting z = projC x − x in (3), we see from (4) that projC (x) solves (3).



10

Motivation Results Conclusion & more questions References

From the proposition,

projC (−λx) ∈ Argmin
c∈C

〈c | projC (−λx) + λx〉. (5)

So, for any v ∈ LMOC (x),

〈projC (−λx) | projC (−λx) + λx〉 6 〈v | projC (−λx) + λx〉. (6)

0 6 〈projC (−λx) | x〉 − 〈v | x〉 6 λ−1(〈v | projC (−λx)〉 − ‖ projC (−λx)‖2) (7)
6 λ−1(‖v‖‖ projC (−λx)‖ − ‖ projC (−λx)‖2) (8)
= λ−1‖ projC (−λx)‖

(
‖v‖ − ‖ projC (−λx)‖

)
(∗)
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Theorem (Projection as Approximate LMO: Explicit error bound; W. 2025)

Let x ∈ H and let C be a nonempty, compact, and convex subset of H with diameter
δC := sup(c1,c2)∈C2 ‖c1 − c2‖ > 0 and bound µC := supc∈C ‖c‖ > 0. Then, for every
λ > 0 and every v ∈ LMOC (x),

0 6 〈projC (−λx) | x〉 −min
c∈C
〈c | x〉 6 ‖ projC (−λx)‖

λ

(
‖v‖ − ‖ projC (−λx)‖

)
. (∗)

In consequence, we have ‖ projC (−λx)‖ 6 ‖v‖ and for every ε > 0,

λ >
min

{
δCµC , µ

2
C
}

ε
⇒ 0 6 〈projC (−λx) | x〉 −min

c∈C
〈c | x〉 6 ε. (9)

If projC (−λ∗x) ∈ LMOC (x), then it is the minimal-norm element of LMOC (x).
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Corollary (Projection is no faster than approximate LMO)

Let ε > 0 and suppose that Assumption 1 holds. Then P + 1 > L(ε). In consequence,
if P > 1, we also have

O(P) > O(L(ε))

.

Proof.
L(ε) is bounded above by the cost of evaluating projC (−λx) which is P + 1.

Drawbacks:
• For some sets, ε↘ 0 means λ↗ +∞, so this result cannot be used to compare

exact LMO to exact projection in general.
• What about comparing exact LMO to exact projection?
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What about exact LMO?
Is there a finite λ∗ such that projC (−λ∗x) ∈ LMOC (x)?

Proposition (Projection is no faster than exact LMO on polyhedral sets; W. 2025)

Let x ∈ Rn =: H and suppose that C ⊂ H is compact, convex, and polyhedral. Then
there exists a finite value λ∗ > 0 such that projC (−λ∗x) ∈ LMOC (x). Further, if
Assumption 1 holds, then P + 1 > L(0); if P > 1, then O(P) > O(L(0)).

Proof idea: Partial dualization + strong duality argument, à la [Geoffrion, 1971] (and
[Theorem 11.5, Güler, 2010]): there exists λ∗ > 0 such that (w/ ν = minv∈C 〈v | x〉)

LMOC (x) 3 projLMOC (x)(0) = minimize
z∈C
〈z|x〉6ν

1
2‖z‖

2 = Argmin
z∈C

1
2‖z‖

2 + λ∗(〈x | z〉 − ν)

= Argmin
z∈C

1
2‖ − λ

∗x − z‖2 = projC (−λ∗x)



13

Motivation Results Conclusion & more questions References

What about exact LMO?
Is there a finite λ∗ such that projC (−λ∗x) ∈ LMOC (x)?

Proposition (Projection is no faster than exact LMO on polyhedral sets; W. 2025)

Let x ∈ Rn =: H and suppose that C ⊂ H is compact, convex, and polyhedral. Then
there exists a finite value λ∗ > 0 such that projC (−λ∗x) ∈ LMOC (x). Further, if
Assumption 1 holds, then P + 1 > L(0); if P > 1, then O(P) > O(L(0)).

Proof idea: Partial dualization + strong duality argument, à la [Geoffrion, 1971] (and
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Recap

• All compact convex sets satisfy O(P) > O(L(ε)) for ε > 0 (This cannot yield a
result on comparison with L(0) in general – some sets require λ↗ +∞)

• Polyhedral sets satisfy O(P) > O(L(0)).
• Current evidence suggests O(P) > O(L(0)) for nuclear norm ball, `1 ball,

probability simplex, Birkhoff polytope, general LP
Open question:

Does there exist any nonempty compact convex set such that P < L(0)?

My guess: “no” if dimH is finite
Contact: woodstzc[at]jmu.edu

Preprint (Currently under revision): arXiv:2501.18454

mailto:woodstzc@jmu.edu
https://arxiv.org/abs/2501.18454
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