Linear Minimization versus Projections: Which is faster?

ICCOPT 2025, Los Angeles, CA, USA

Zev Woodstock

woodstzc[at]jmu.edu James Madison University (JMU)

- $oldsymbol{1}$. Motivation
- 2. Results

Motivation

3. Conclusion & more questions

Setting

Notation: \mathcal{H} is a real Hilbert space with inner product, $\langle \cdot | \cdot \rangle$ and induced norm $\| \cdot \|$.

C is a nonempty compact convex subset of \mathcal{H} .

Consider two operations w.r.t. C: projection and linear minimization oracle

$$\operatorname{proj}_{C}(x) = \operatorname{Argmin}_{v \in C} ||x - v||^{2} \qquad \operatorname{LMO}_{C}(x) \in \operatorname{Argmin}_{v \in C} \langle x \mid v \rangle. \tag{1}$$

Let's race them.

Motivation

image: Meta Al

Motivation 0000

> This will help us perform per-iteration complexity comparisons between two very large families of first-order algorithms: Projection methods and Frank-Wolfe, (AKA Conditional Gradient) methods.

... But why?

Motivation 0000

> This will help us perform per-iteration complexity comparisons between two very large families of first-order algorithms: Projection methods and Frank-Wolfe, (AKA Conditional Gradient) methods.

> Many works (e.g., [C. Combettes & Pokutta, 2021], [Dunn & Harshbarger, 1978], [Garber, Kaplan, & Sabach, 2021], ...) have established that (especially when dim \mathcal{H} is high), LMO is currently faster than proj on a variety of set classes C:

... But why?

This will help us perform per-iteration complexity comparisons between two very large families of first-order algorithms: Projection methods and Frank-Wolfe, (AKA Conditional Gradient) methods.

Many works (e.g., [C. Combettes & Pokutta, 2021], [Dunn & Harshbarger, 1978], [Garber, Kaplan, & Sabach, 2021], ...) have established that (especially when dim \mathcal{H} is high), LMO is currently faster than proj on a variety of set classes C:

LMO-advantaged sets: nuclear norm ball, ℓ_1 ball, probability simplex, Birkhoff polytope, general LP,

... But why?

Motivation

This will help us perform per-iteration complexity comparisons between two very large families of first-order algorithms: Projection methods and Frank-Wolfe, (AKA Conditional Gradient) methods.

Many works (e.g., [C. Combettes & Pokutta, 2021], [Dunn & Harshbarger, 1978], [Garber, Kaplan, & Sabach, 2021], ...) have established that (especially when dim \mathcal{H} is high), LMO is currently faster than proj on a variety of set classes C:

LMO-advantaged sets: nuclear norm ball, ℓ_1 ball, probability simplex, Birkhoff polytope, general LP.

Open question: Is there a compact convex *C* that is not "LMO-advantaged"?

Motivation ○○○●

Complexity / Definitions

For $\varepsilon \geqslant 0$, an ε -approximate LMO of x is a point $v \in C$ such that

$$0 \leqslant \langle v \mid x \rangle - \min_{c \in C} \langle c \mid x \rangle \leqslant \varepsilon.$$

At times, it will be convenient to use the set-valued notation

$$\mathsf{LMO}_{C}(x) = \operatorname*{Argmin}_{v \in C} \langle x \mid v \rangle \subset \mathcal{H}$$

Motivation 0000

Complexity / Definitions

For $\varepsilon \geqslant 0$, an ε -approximate LMO of x is a point $v \in C$ such that

$$0 \leqslant \langle v \mid x \rangle - \min_{c \in C} \langle c \mid x \rangle \leqslant \varepsilon.$$

At times, it will be convenient to use the set-valued notation

$$\mathsf{LMO}_{C}(x) = \operatorname*{Argmin}_{v \in C} \langle x \mid v \rangle \subset \mathcal{H}$$

Assumption 1: Suppose that projection and ε -approximate linear minimization can be performed over C using finitely many vector-arithmetic operations. Let P and $L(\varepsilon)$ respectively denote the smallest amount of operations required.*

Inotel For most sets C. we do not know P and $L(\varepsilon)$

^{*:} Black-box complexity model may be easier; article under revision.

Linear Minimization v. Projections: Which is faster?

- 2. Results
- 3. Conclusion & more questions

Approximate $LMO_C(x)$ using one evaluation of proj_C;

Gameplan

Approximate $LMO_C(x)$ using one evaluation of $proj_C$; carefully manage the error.

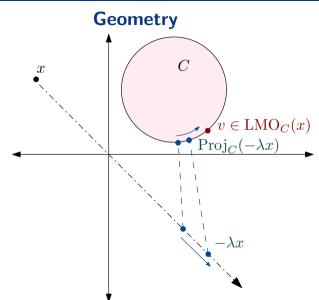
Gameplan

Approximate LMO_C(x) using one evaluation of $proj_C$; carefully manage the error.

Two results:

- 1. For $\varepsilon > 0$ "Optimal cost of ε -LMO" \leq "Optimal cost of projection"
- 2. If *C* is polyhedral: "Optimal cost of exact LMO"

 "Optimal cost of projection"



Geometric concept (similar to [Mortagy, Gupta, & Pokutta, 2023])

$$\operatorname{proj}_{\mathcal{C}}(-\lambda x) \approx \operatorname{LMO}_{\mathcal{C}}(x).$$

Q: What explicit λ is needed to guarantee $\operatorname{proj}_{\mathcal{C}}(-\lambda x)$ is an ε -approximate LMO?

Proposition

Let $C \subset \mathcal{H}$ be a nonempty compact convex set. Then, for every $x \in \mathcal{H}$,

$$\operatorname{proj}_{C} x \in \operatorname{LMO}_{C}(\operatorname{proj}_{C} x - x). \tag{2}$$

[note]: Depending on your selection (single-valued implementation) of LMO $_C$, (2) might not hold with equality!

Proposition

Let $C \subset \mathcal{H}$ be a nonempty compact convex set. Then, for every $x \in \mathcal{H}$,

$$\operatorname{proj}_{C} x \in \operatorname{LMO}_{C}(\operatorname{proj}_{C} x - x). \tag{2}$$

Proof.

$$(\forall z \in \mathcal{H}) \quad v \in \mathsf{LMO}_{C}(z) = \underset{c \in C}{\mathsf{Argmin}} \langle z \mid c \rangle \Leftrightarrow \begin{cases} v \in C \\ \sup_{c \in C} \langle -z \mid c - v \rangle \leqslant 0. \end{cases} \tag{3}$$

$$p = \operatorname{proj}_{C} x \Leftrightarrow x - p \in N_{C} p \Leftrightarrow \begin{cases} p \in C \\ \sup_{c \in C} \langle x - p \mid c - p \rangle \leqslant 0. \end{cases}$$

$$\tag{4}$$

Setting $z = \text{proj}_{\mathcal{C}} x - x$ in (3), we see from (4) that $\text{proj}_{\mathcal{C}}(x)$ solves (3).

$$\operatorname{proj}_{C}(-\lambda x) \in \operatorname{Argmin} \langle c \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle. \tag{5}$$

So, for any $v \in LMO_C(x)$,

$$\langle \operatorname{proj}_{\mathcal{C}}(-\lambda x) \mid \operatorname{proj}_{\mathcal{C}}(-\lambda x) + \lambda x \rangle \leqslant \langle v \mid \operatorname{proj}_{\mathcal{C}}(-\lambda x) + \lambda x \rangle.$$
 (6)

$$\operatorname{proj}_{C}(-\lambda x) \in \operatorname{Argmin}_{c \in C} \langle c \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle. \tag{5}$$

So, for any $v \in LMO_C(x)$,

$$\langle \operatorname{proj}_{C}(-\lambda x) \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle \leqslant \langle v \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle.$$
 (6)

$$\operatorname{proj}_{C}(-\lambda x) \in \operatorname{Argmin} \langle c \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle. \tag{5}$$

So, for any $v \in LMO_C(x)$,

$$\langle \operatorname{proj}_{C}(-\lambda x) \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle \leqslant \langle v \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle.$$
 (6)

$$\langle \operatorname{proj}_{\mathcal{C}}(-\lambda x) \mid x \rangle - \langle v \mid x \rangle \leqslant \lambda^{-1}(\langle v \mid \operatorname{proj}_{\mathcal{C}}(-\lambda x) \rangle - \|\operatorname{proj}_{\mathcal{C}}(-\lambda x)\|^{2})$$
 (7)

$$\operatorname{proj}_{C}(-\lambda x) \in \operatorname{Argmin}_{c \in C} \langle c \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle. \tag{5}$$

So, for any $v \in LMO_C(x)$,

$$\langle \operatorname{proj}_{C}(-\lambda x) \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle \leqslant \langle v \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle.$$
 (6)

$$0 \leqslant \langle \operatorname{proj}_{C}(-\lambda x) \mid x \rangle - \langle v \mid x \rangle \leqslant \lambda^{-1}(\langle v \mid \operatorname{proj}_{C}(-\lambda x) \rangle - \|\operatorname{proj}_{C}(-\lambda x)\|^{2})$$
 (7)

$$\operatorname{proj}_{\mathcal{C}}(-\lambda x) \in \operatorname{Argmin} \langle c \mid \operatorname{proj}_{\mathcal{C}}(-\lambda x) + \lambda x \rangle. \tag{5}$$

So, for any $v \in LMO_C(x)$,

$$\langle \operatorname{proj}_{C}(-\lambda x) \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle \leqslant \langle v \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle.$$
 (6)

$$0 \leqslant \langle \operatorname{proj}_{C}(-\lambda x) \mid x \rangle - \langle v \mid x \rangle \leqslant \lambda^{-1}(\langle v \mid \operatorname{proj}_{C}(-\lambda x) \rangle - \|\operatorname{proj}_{C}(-\lambda x)\|^{2})$$
 (7)

$$\leqslant \lambda^{-1}(\|v\|\|\operatorname{proj}_{\mathcal{C}}(-\lambda x)\| - \|\operatorname{proj}_{\mathcal{C}}(-\lambda x)\|^2)$$
 (8)

$$= \lambda^{-1} \| \operatorname{proj}_{C}(-\lambda x) \| (\| v \| - \| \operatorname{proj}_{C}(-\lambda x) \|)$$
 (*)

$$\operatorname{proj}_{\mathcal{C}}(-\lambda x) \in \operatorname{Argmin} \langle c \mid \operatorname{proj}_{\mathcal{C}}(-\lambda x) + \lambda x \rangle. \tag{5}$$

So, for any $v \in LMO_{\mathcal{C}}(x)$.

$$\langle \operatorname{proj}_{C}(-\lambda x) \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle \leqslant \langle v \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle.$$
 (6)

$$0 \leqslant \langle \operatorname{proj}_{C}(-\lambda x) \mid x \rangle - \langle v \mid x \rangle \leqslant \lambda^{-1}(\langle v \mid \operatorname{proj}_{C}(-\lambda x) \rangle - \|\operatorname{proj}_{C}(-\lambda x)\|^{2})$$
 (7)

$$\leq \lambda^{-1}(\Vert v \Vert \Vert \operatorname{proj}_{C}(-\lambda x) \Vert - \Vert \operatorname{proj}_{C}(-\lambda x) \Vert^{2})$$
 (8)

$$\langle x \rangle = \frac{1}{||x|||} ||x|| ||x||| ||x||||$$

$$= \lambda^{-1} \| \operatorname{proj}_{C}(-\lambda x) \| (\|v\| - \| \operatorname{proj}_{C}(-\lambda x) \|)$$
 (*)

$$\leq \lambda^{-1} \| \operatorname{proj}_{C}(-\lambda x) \| \| v - \operatorname{proj}_{C}(-\lambda x) \|$$

$$\operatorname{proj}_{\mathcal{C}}(-\lambda x) \in \operatorname{Argmin} \langle c \mid \operatorname{proj}_{\mathcal{C}}(-\lambda x) + \lambda x \rangle. \tag{5}$$

So, for any $v \in LMO_{\mathcal{C}}(x)$.

$$\langle \operatorname{proj}_{C}(-\lambda x) \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle \leqslant \langle v \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle.$$
 (6)

Set $\delta_C := \sup_{(c_1,c_2) \in C^2} \|c_1 - c_2\| \geqslant 0$ and $\mu_C := \sup_{c \in C} \|c\| \geqslant 0$.

$$0 \leqslant \langle \operatorname{proj}_{C}(-\lambda x) \mid x \rangle - \langle v \mid x \rangle \leqslant \lambda^{-1}(\langle v \mid \operatorname{proj}_{C}(-\lambda x) \rangle - \|\operatorname{proj}_{C}(-\lambda x)\|^{2})$$
 (7)

$$\leqslant \lambda^{-1}(\|v\|\|\operatorname{proj}_{C}(-\lambda x)\| - \|\operatorname{proj}_{C}(-\lambda x)\|^{2})$$
 (8)

$$= \lambda^{-1} \|\operatorname{proj}_{C}(-\lambda x)\| (\|v\| - \|\operatorname{proj}_{C}(-\lambda x)\|) \tag{*}$$

$$\leq \lambda^{-1} \| \operatorname{proj}_{C}(-\lambda x) \| \| v - \operatorname{proj}_{C}(-\lambda x) \|$$

$$\operatorname{proj}_{C}(-\lambda x) \in \operatorname{Argmin} \langle c \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle. \tag{5}$$

So, for any $v \in LMO_{\mathcal{C}}(x)$.

$$\langle \operatorname{proj}_{\mathcal{C}}(-\lambda x) \mid \operatorname{proj}_{\mathcal{C}}(-\lambda x) + \lambda x \rangle \leq \langle v \mid \operatorname{proj}_{\mathcal{C}}(-\lambda x) + \lambda x \rangle.$$
 (6)

Set $\delta_C := \sup_{(c_1,c_2) \in C^2} \|c_1 - c_2\| \geqslant 0$ and $\mu_C := \sup_{c \in C} \|c\| \geqslant 0$.

$$0 \leqslant \langle \operatorname{proj}_{C}(-\lambda x) \mid x \rangle - \langle v \mid x \rangle \leqslant \lambda^{-1}(\langle v \mid \operatorname{proj}_{C}(-\lambda x) \rangle - \|\operatorname{proj}_{C}(-\lambda x)\|^{2})$$
 (7)

$$\leq \lambda^{-1}(\|\mathbf{v}\|\|\operatorname{proj}_{C}(-\lambda x)\| - \|\operatorname{proj}_{C}(-\lambda x)\|^{2}) \tag{8}$$

$$= \lambda^{-1} \| \operatorname{proj}_{-}(-\lambda x) \| (\|y\| - \| \operatorname{proj}_{-}(-\lambda x) \|)$$

$$= \lambda^{-1} \| \operatorname{proj}_{C}(-\lambda x) \| (\| v \| - \| \operatorname{proj}_{C}(-\lambda x) \|) \qquad (*)$$

$$\leq \lambda^{-1} \| \operatorname{proj}_{C}(-\lambda x) \| \| v - \operatorname{proj}_{C}(-\lambda x) \|$$

$$\operatorname{proj}_{C}(-\lambda x) \in \operatorname{Argmin}_{C} \langle c \mid \operatorname{proj}_{C}(-\lambda x) + \lambda x \rangle. \tag{5}$$

So, for any $v \in LMO_{\mathcal{C}}(x)$.

$$\langle \operatorname{proj}_{\mathcal{C}}(-\lambda x) \mid \operatorname{proj}_{\mathcal{C}}(-\lambda x) + \lambda x \rangle \leq \langle v \mid \operatorname{proj}_{\mathcal{C}}(-\lambda x) + \lambda x \rangle.$$
 (6)

Set $\delta_C := \sup_{(c_1,c_2) \in C^2} \|c_1 - c_2\| \geqslant 0$ and $\mu_C := \sup_{c \in C} \|c\| \geqslant 0$.

$$0 \leqslant \langle \operatorname{proj}_{C}(-\lambda x) \mid x \rangle - \langle v \mid x \rangle \leqslant \lambda^{-1}(\langle v \mid \operatorname{proj}_{C}(-\lambda x) \rangle - \|\operatorname{proj}_{C}(-\lambda x)\|^{2})$$
 (7)

$$\leq \lambda^{-1}(\|\mathbf{v}\|\|\operatorname{proj}_{C}(-\lambda x)\| - \|\operatorname{proj}_{C}(-\lambda x)\|^{2}) \tag{8}$$

$$= \lambda^{-1} \| \operatorname{proj}_{C}(-\lambda x) \| (\|v\| - \| \operatorname{proj}_{C}(-\lambda x) \|)$$
 (*)

$$= \lambda^{-1} \|\operatorname{proj}_{C}(-\lambda x)\| (\|v\| - \|\operatorname{proj}_{C}(-\lambda x)\|)$$

$$\leq \lambda^{-1} \|\operatorname{proj}_{C}(-\lambda x)\| \|v\|$$

$$\leqslant \lambda^{-1} \mu_C^2$$

Theorem (Projection as Approximate LMO: Explicit error bound; W. 2025)

Let $x \in \mathcal{H}$ and let C be a nonempty, compact, and convex subset of \mathcal{H} with diameter $\delta_C := \sup_{(c_1, c_2) \in C^2} \|c_1 - c_2\| \geqslant 0$ and bound $\mu_C := \sup_{c \in C} \|c\| \geqslant 0$. Then, for every $\lambda > 0$ and every $\nu \in \mathsf{LMO}_{\mathcal{C}}(x)$,

$$0 \leqslant \langle \operatorname{proj}_{C}(-\lambda x) \mid x \rangle - \min_{c \in C} \langle c \mid x \rangle \leqslant \frac{\| \operatorname{proj}_{C}(-\lambda x) \|}{\lambda} \Big(\|v\| - \| \operatorname{proj}_{C}(-\lambda x) \| \Big).$$
 (*

In consequence, we have $\|\operatorname{proj}_{\mathcal{C}}(-\lambda x)\| \leq \|v\|$ and for every $\varepsilon > 0$,

$$\lambda \geqslant \frac{\min\left\{\delta_C \mu_C, \mu_C^2\right\}}{\varepsilon} \quad \Rightarrow \quad 0 \leqslant \langle \operatorname{proj}_C(-\lambda x) \mid x \rangle - \min_{c \in C} \langle c \mid x \rangle \leqslant \varepsilon. \tag{9}$$

Theorem (Projection as Approximate LMO: Explicit error bound; W. 2025)

Let $x \in \mathcal{H}$ and let C be a nonempty, compact, and convex subset of \mathcal{H} with diameter $\delta_C := \sup_{(c_1, c_2) \in C^2} \|c_1 - c_2\| \geqslant 0$ and bound $\mu_C := \sup_{c \in C} \|c\| \geqslant 0$. Then, for every $\lambda > 0$ and every $\nu \in \mathsf{LMO}_{\mathcal{C}}(x)$,

$$0 \leqslant \langle \operatorname{proj}_{C}(-\lambda x) \mid x \rangle - \min_{c \in C} \langle c \mid x \rangle \leqslant \frac{\| \operatorname{proj}_{C}(-\lambda x) \|}{\lambda} \Big(\| v \| - \| \operatorname{proj}_{C}(-\lambda x) \| \Big).$$
 (*

In consequence, we have $\|\operatorname{proj}_{\mathcal{C}}(-\lambda x)\| \leq \|v\|$ and for every $\varepsilon > 0$,

$$\lambda \geqslant \frac{\min\left\{\delta_C \mu_C, \mu_C^2\right\}}{\varepsilon} \quad \Rightarrow \quad 0 \leqslant \langle \operatorname{proj}_C(-\lambda x) \mid x \rangle - \min_{c \in C} \langle c \mid x \rangle \leqslant \varepsilon. \tag{9}$$

If $\operatorname{proj}_{\mathcal{C}}(-\lambda^*x) \in \operatorname{LMO}_{\mathcal{C}}(x)$, then it is the minimal-norm element of $\operatorname{LMO}_{\mathcal{C}}(x)$.

Corollary (Projection is no faster than approximate LMO)

Let $\varepsilon > 0$ and suppose that Assumption 1 holds. Then $P + 1 \ge L(\varepsilon)$. In consequence, if $P \ge 1$, we also have

$$\mathcal{O}(P) \geqslant \mathcal{O}(L(\varepsilon))$$

•

Proof.

 $L(\varepsilon)$ is bounded above by the cost of evaluating $\operatorname{proj}_{\mathcal{C}}(-\lambda x)$ which is P+1.

Let $\varepsilon > 0$ and suppose that Assumption 1 holds. Then $P + 1 \ge L(\varepsilon)$. In consequence, if $P \ge 1$, we also have

$$\mathcal{O}(P) \geqslant \mathcal{O}(L(\varepsilon))$$

•

Proof.

 $L(\varepsilon)$ is bounded above by the cost of evaluating $\operatorname{proj}_{\mathcal{C}}(-\lambda x)$ which is P+1.

Drawbacks:

- For some sets, $\varepsilon \searrow 0$ means $\lambda \nearrow +\infty$, so this result cannot be used to compare exact LMO to exact projection in general.
- What about comparing exact LMO to exact projection?

Is there a finite λ^* such that $\operatorname{proj}_{\mathcal{C}}(-\lambda^*x) \in \operatorname{LMO}_{\mathcal{C}}(x)$?

What about exact LMO?

Is there a finite λ^* such that $\operatorname{proj}_{\mathcal{C}}(-\lambda^*x) \in \operatorname{LMO}_{\mathcal{C}}(x)$?

Proposition (Projection is no faster than exact LMO on polyhedral sets; W. 2025)

Let $x \in \mathbb{R}^n =: \mathcal{H}$ and suppose that $C \subset \mathcal{H}$ is compact, convex, and polyhedral. Then there exists a finite value $\lambda^* \geqslant 0$ such that $\operatorname{proj}_C(-\lambda^* x) \in \operatorname{LMO}_C(x)$. Further, if Assumption 1 holds, then $P+1 \geqslant L(0)$; if $P \geqslant 1$, then $\mathcal{O}(P) \geqslant \mathcal{O}(L(0))$.

What about exact LMO?

Is there a finite λ^* such that $\operatorname{proj}_{\mathcal{C}}(-\lambda^*x) \in \operatorname{LMO}_{\mathcal{C}}(x)$?

Proposition (Projection is no faster than exact LMO on polyhedral sets; W. 2025)

Let $x \in \mathbb{R}^n =: \mathcal{H}$ and suppose that $\mathcal{C} \subset \mathcal{H}$ is compact, convex, and polyhedral. Then there exists a finite value $\lambda^* \ge 0$ such that $\operatorname{proj}_{\mathcal{C}}(-\lambda^* x) \in \operatorname{LMO}_{\mathcal{C}}(x)$. Further, if Assumption 1 holds, then $P+1 \ge L(0)$; if $P \ge 1$, then $\mathcal{O}(P) \ge \mathcal{O}(L(0))$.

Proof idea: Partial dualization + strong duality argument, à la [Geoffrion, 1971] (and [Theorem 11.5, Güler, 2010]): there exists $\lambda^* > 0$ such that $(w/\nu = \min_{v \in C} \langle v \mid x \rangle)$

$$\operatorname{proj}_{\mathsf{LMO}_{\mathcal{C}}(x)}(\mathbf{0}) = \underset{\substack{z \in \mathcal{C} \\ \langle z \mid x \rangle \leqslant \nu}}{\operatorname{minimize}} \ \frac{1}{2} \|z\|^2 = \operatorname{Argmin} \ \frac{1}{2} \|z\|^2 + \lambda^* (\langle x \mid z \rangle - \nu)$$
$$= \operatorname{Argmin} \ \frac{1}{2} \| - \lambda^* x - z \|^2 = \operatorname{proj}_{\mathcal{C}}(-\lambda^* x)$$

What about exact LMO?

Is there a finite λ^* such that $\operatorname{proj}_{\mathcal{C}}(-\lambda^*x) \in \operatorname{LMO}_{\mathcal{C}}(x)$?

Proposition (Projection is no faster than exact LMO on polyhedral sets; W. 2025)

Let $x \in \mathbb{R}^n =: \mathcal{H}$ and suppose that $\mathcal{C} \subset \mathcal{H}$ is compact, convex, and polyhedral. Then there exists a finite value $\lambda^* \ge 0$ such that $\operatorname{proj}_{\mathcal{C}}(-\lambda^* x) \in \operatorname{LMO}_{\mathcal{C}}(x)$. Further, if Assumption 1 holds, then $P+1 \ge L(0)$; if $P \ge 1$, then $\mathcal{O}(P) \ge \mathcal{O}(L(0))$.

Proof idea: Partial dualization + strong duality argument, à la [Geoffrion, 1971] (and [Theorem 11.5, Güler, 2010]): there exists $\lambda^* > 0$ such that $(w/\nu = \min_{v \in C} \langle v \mid x \rangle)$

$$\mathsf{LMO}_{\mathcal{C}}(x) \ni \mathsf{proj}_{\mathsf{LMO}_{\mathcal{C}}(x)}(\mathbf{0}) = \underset{\substack{z \in \mathcal{C} \\ \langle z \mid x \rangle \leqslant \nu}}{\mathsf{minimize}} \ \frac{1}{2} \|z\|^2 = \mathsf{Argmin} \ \frac{1}{2} \|z\|^2 + \lambda^* (\langle x \mid z \rangle - \nu)$$
$$= \mathsf{Argmin} \ \frac{1}{2} \|-\lambda^* x - z\|^2 = \mathsf{proj}_{\mathcal{C}}(-\lambda^* x)$$

Linear Minimization v. Projections: Which is faster?

- 2. Results
- 3. Conclusion & more questions

• All compact convex sets satisfy $\mathcal{O}(P) \geqslant \mathcal{O}(L(\varepsilon))$ for $\varepsilon > 0$ (This cannot yield a result on comparison with L(0) in general – some sets require $\lambda \nearrow +\infty$)

- All compact convex sets satisfy $\mathcal{O}(P) \geqslant \mathcal{O}(L(\varepsilon))$ for $\varepsilon > 0$ (This cannot yield a result on comparison with L(0) in general some sets require $\lambda \nearrow +\infty$)
- Polyhedral sets satisfy $\mathcal{O}(P) \geqslant \mathcal{O}(L(0))$.

- All compact convex sets satisfy $\mathcal{O}(P) \geqslant \mathcal{O}(L(\varepsilon))$ for $\varepsilon > 0$ (This cannot yield a result on comparison with L(0) in general some sets require $\lambda \nearrow +\infty$)
- Polyhedral sets satisfy $\mathcal{O}(P) \geqslant \mathcal{O}(L(0))$.
- Current evidence suggests $\mathcal{O}(P) \geqslant \mathcal{O}(L(0))$ for nuclear norm ball, ℓ_1 ball, probability simplex, Birkhoff polytope, general LP

- All compact convex sets satisfy $\mathcal{O}(P) \geqslant \mathcal{O}(L(\varepsilon))$ for $\varepsilon > 0$ (This cannot yield a result on comparison with L(0) in general some sets require $\lambda \nearrow +\infty$)
- Polyhedral sets satisfy $\mathcal{O}(P) \geqslant \mathcal{O}(L(0))$.
- Current evidence suggests $\mathcal{O}(P) \geqslant \mathcal{O}(L(0))$ for nuclear norm ball, ℓ_1 ball, probability simplex, Birkhoff polytope, general LP

Open question:

Does there exist **any** nonempty compact convex set such that P < L(0)?

- All compact convex sets satisfy $\mathcal{O}(P) \geqslant \mathcal{O}(L(\varepsilon))$ for $\varepsilon > 0$ (This cannot yield a result on comparison with L(0) in general some sets require $\lambda \nearrow +\infty$)
- Polyhedral sets satisfy $\mathcal{O}(P) \geqslant \mathcal{O}(L(0))$.
- Current evidence suggests $\mathcal{O}(P) \geqslant \mathcal{O}(L(0))$ for nuclear norm ball, ℓ_1 ball, probability simplex, Birkhoff polytope, general LP

Open question:

Does there exist any nonempty compact convex set such that P < L(0)?

My guess: "no" if $\dim \mathcal{H}$ is finite

- All compact convex sets satisfy $\mathcal{O}(P) \geqslant \mathcal{O}(L(\varepsilon))$ for $\varepsilon > 0$ (This cannot yield a result on comparison with L(0) in general – some sets require $\lambda \nearrow +\infty$)
- Polyhedral sets satisfy $\mathcal{O}(P) \geqslant \mathcal{O}(L(0))$.
- Current evidence suggests $\mathcal{O}(P) \geqslant \mathcal{O}(L(0))$ for nuclear norm ball, ℓ_1 ball, probability simplex. Birkhoff polytope, general LP

Open question:

Does there exist **any** nonempty compact convex set such that P < L(0)?

My guess: "no" if dim \mathcal{H} is finite

Contact: woodstzc[at] jmu.edu

Preprint (Currently under revision): arXiv:2501.18454

Thank you for your attention!

- M. Besançon, M. Carderera, and S. Pokutta, FrankWolfe. il: A high-performance and flexible toolbox for Frank-Wolfe algorithms and conditional gradients INFORMS J. Comput., vol. 34 (5), pp. 2611-2620, 2022.
- C. W. Combettes and S. Pokutta, Complexity of linear minimization and projection on some sets Oper. Res. Lett., vol. 49, no. 4, pp. 565–571, 2021
- J. Dunn and S. Harshbarger, Conditional gradient algorithms with open loop step size rules J. Math. Anal. Appl., vol. 62, pp. 432–444, 1978.
- R. M. Freund and P. Grigas, New analysis and results for the Frank-Wolfe method Math. Program., Ser. A. vol. 155, pp. 199–230, 2016.
- D. Garber, A. Kaplan, and S. Sabach, Improved complexities of conditional gradient-type methods with applications to robust matrix recovery problems Math. Program., vol. 186, pp. 185–208, 2021.
 - A. M. Geoffrion, Duality in nonlinear programming: A simplified applications-oriented development SIAM Rev., vol. 13 (1) pp. 1–37, 1971.

References

O. Güler Foundations of Optimization, Springer, New York, 2010.

M. Jaggi, Revisiting Frank-Wolfe: Projection-free sparse convex optimization *Proc. 30th International Conference on Machine Learning*, in PMLR, vol. 28 (1), pp. 427–435, 2013.

H. Mortagy, S. Gupta, and S. Pokutta, Walking in the shadow: A new perspective on descent directions for constrained minimization *Proc. 34th Conference on Neural Information Processing Systems*, vol. 33, pp. 12873–12883, 2020.

A. Silveti-Falls, C. Molinari and J. Fadili, Inexact and stochastic generalized conditional gradient with augmented Lagrangian and proximal step *J. Nonsmooth Anal. Optim.*, vol. 2, 2021.