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@ Sefting and history
@ Firmly nonexpansive equations
@ Feasibility problems involving such equations

e relaxation for inconsistent problems
e “regularization”
@ Theory & numerics
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Motivation: the linear setfting

Youla’s Model, 1978

Let U; and U, be closed vector subspaces of a real
Hilbert space H. Given p € U,,

find x € Uy such that proj, x = p.

This can be solved using projection methods.
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Motivation: the linear setfting

Original signal:
Youla’s Model, 1978 —m)

Let U; and U, be closed vector subspaces of a real
Hilbert space H. Given p € U,, .
find x € Uy such that proj, x = p. 7 Vo V ~
i info:
This can be solved using projection methods. Civen n';(:
Example: Bandlimited extrapolation (Papoulis, 1975) TR ;
Lleto >0,D CR,and p = X|p. BEe \/”D- AV
Goal: find x such that Fw)
r=r-
p=X|p a.e. i i
X =0 outside of [-a,0] a.e. [
—0 g




Intro
ooe

Extension of the linear setting

Combettes & Reyes, 2010

Let K be a finite set. For every k € K, let U, be a closed vector
subspace of H, and let p, € Ux. The goalis to

find x € H suchthat (vk € K) Projy, X = Px-

@ Projection methods are available for finding solutions.

@ This model captures linear a priori constraints, since for any vector
subspace U C H, x € U < proj,.x =0.
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Extension of the linear setting

Combettes & Reyes, 2010

Let K be a finite set. For every k € K, let U, be a closed vector
subspace of H, and let p, € Ux. The goalis to

find x € H suchthat (vk € K) Projy, X = Px-

@ Projection methods are available for finding solutions.

@ This model captures linear a priori constraints, since for any vector
subspace U C H, x € U < proj,.x =0.

However, there are many applications in which we seek 1o solve
(Vk € K) FX = P,

where (F¢)kek Qre nonlinear operators on a real Hilbert space H.



Applications
@00000

Our setting

Let H be a real Hilbert space. The operator F: H — H is firmly
nonexpansive if

(V(x,y) € H®) [IFx = Fyl® < lIx = yII* = |(1d = F)x — (id — F)yl|*.

@ General enough to capture many applications.

@ Sufficiently structured fo yield fractable, efficient algorithms which
converge to a solution from any initial point.

@ Special case: Proximity operators (e.g., Projections onto closed
convex sets.)
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Let F: H — H be firmly nonexpansive.
How do we enforce that Fx = p?

Difficulties:



Applications
[o] lelelele)

Roadblocks

Let F: H — H be firmly nonexpansive.
How do we enforce that Fx = p?

Difficulties:
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@ Guarantees of convergence to a solution are rare.
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Roadblocks

Let F: H — H be firmly nonexpansive.
How do we enforce that Fx = p?

Difficulties:
@ ||F(-) — pJ| is typically nonconvex.

@ Convex minimization tools cannot be used.
@ Guarantees of convergence to a solution are rare.

@ In general, projecting onto F~' ({p}) is not possible.

@ Cannot be solved using projection methods.
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Examples: projections

@ Dimension reductionand saturation




Applications
[e]e] lelele)

Examples: projections

@ Dimension reductionand saturation




Applications
[e]e] lelele)

Examples: projections

@ Dimension reductionand saturation

.
& L p(f)
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@ Soft clipping
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Examples

@ Soft clipping

@ Mixing firmly nonexpansive operators via superposition and/or
composition with bounded linear operators (up fo rescaling by a
known strictly positive constant)
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Examples

@ Soft clipping

@ Mixing firmly nonexpansive operators via superposition and/or
composition with bounded linear operators (up fo rescaling by a
known strictly positive constant)

Output
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Examples: “proxification”

Definition: Given Q: H — H and g € ranQ, (Q, q) is proxifiable if there
exists F: H — H which is firmly nonexpansive and p € ranF such that

(WxeH) e&x=9g < Fx=p

M
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Examples: “proxification”

Definition: Given Q: H — H and g € ranQ, (Q, q) is proxifiable if there
exists F: H — H which is firmly nonexpansive and p € ranF such that

(WxeH) e&x=9g < Fx=p
Example: Hard thresholding at level v > 0

§ gl >

hard, :
”fH{Qifasm
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Examples: “proxification”

Definition: Given Q: H — H and g € ranQ, (Q, q) is proxifiable if there
exists F: H — H which is firmly nonexpansive and p € ranF such that

(WxeH) e&x=9g < Fx=p
Example: Hard thresholding at level v > 0 and soft thresholding

§ gl >

0. if €] <~ soft,, : € — sign(¢)max{|¢| —~v,0} (1)

hard, : 5»—>{

/w\/ P RV VR
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Examples: "proxification”

Let H = RVM, set s = min{N, M}, let v > 0, and
denote the singular value decomposition of
X € H by

x = Uy diag (o1(x),...,05(X))Vy . 2)
A low rank approximation g of x is

Uy diag ( hard, (o1(x)),..., hard, (as(x))) V.

©)
We can enforce that an image has a prescribed
low rank approximation:
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Examples: "proxification”

Let H = RVM, set s = min{N, M}, let v > 0, and
denote the singular value decomposition of
X € H by

x = Uy diag (o1(x),...,05(X))Vy . 2)
A low rank approximation g of x is

Uy diag ( hard, (o1(x)),..., hard, (as(x))) V.
)

We can enforce that an image has a prescribed
low rank approximation: Set
FrH—>H: x—
Uyx diag ( softy (o1(x)),..., softy (os(x))) Vi
and construct p by shifting the nonzero singular
values of g by —~.
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Feasibility

We seek to recover a signal x in a real Hilbert space #H from
@ A finite number of transformations (pk)kex of the form

Fkyzpkv

where F: H — H is firmly nonexpansive.
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Feasibility

We seek to recover a signal x in a real Hilbert space #H from
@ A finite number of transformations (pk)kex of the form

Fkyzpkv

where F: H — H is firmly nonexpansive.

@ A finite number of constraints in the form of closed, convex sets
(Gj)jes model properties of X which are known a priori
(e.g. pixel ranges, phase information, .. .).

Problem 1

find xe()C suchthat (vkeK) Fx=p,
i N——
jeJ Transformations
———
Prior information

assuming at least one solution exists.
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Foregoing minimization: directly o fixed points.

Main ingredients:
@ Forevery k € K,set T, =1d — F + p.
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Foregoing minimization: directly o fixed points.

Main ingredients:
@ Forevery k € K,set T, =1d — F, + px.
o FixTy=F '({px}) = {x € H | Fx = px}
e T is firmly nonexpansive
@ X solves the main problem if and only if

X € ﬂFixprojcj N (ﬂ Fix Tk> ,
jed kek

which is just a common fixed point problem involving firmly
nonexpansive operators!

@ Algorithm and numerics:

@ P L. Combettes and ZCW, A fixed point framework for
recovering signals from nonlinear transformations,
2020 Proc. Eur. Signal Process. Soc., pp. 2120-2124.
Amsterdam, The Netherlands, Jan. 18-22, 2021.
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Inconsistent feasibility

Let C c H be nonempty closed and convex and let | be finite. For
every i € |, let G; be areal Hilbert space, let p; € G, let L;: H — Gibe a
nonzero bounded linear operator, and let F;: G; — G; be a firmly
nonexpansive operator. The goal is to

find x € C such that (Vi e /) F(Lx) = p;, @
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but noise or poor modeling can make (4) inconsistent.
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@ If (4) has a solution, then it is equivalent to Problem 3.
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Inconsistent feasibility

Let C c H be nonempty closed and convex and let | be finite. For
every i € |, let G; be areal Hilbert space, let p; € G, let L;: H — Gibe a
nonzero bounded linear operator, and let F;: G; — G; be a firmly
nonexpansive operator. The goal is to

find x € C such that (Vi e /) F(Lx) = p;, @

but noise or poor modeling can make (4) inconsistent.

Problem 3: A variational inequality relaxation of (4)

Let (wy)ier be real numbers in ]0, 1] such that 37, w; = 1.

find x € C such that (Vy € C) Zw,-(L,-(y —X) | Fi(Lix) — pi) = 0.

iel

@ If (4) has a solution, then it is equivalent to Problem 3.

@ Problem 3 is guaranteed to possess solutions under mild
conditions.
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Intuition: relaxed problem

Example 1 of Problem 3

Let 3 > 0andlet f: H — R be convex with a
B~ '-Lipschitzian gradient. Set F, = 8Vf, p; =0,
and L; = Id. Then (4) is equivalent to

find x e Cn Argmin f
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Intuition: relaxed problem

Example 1 of Problem 3

Let 3 > 0andlet f: H — R be convex with a
B~ '-Lipschitzian gradient. Set F, = BV, p; =0,
and L; = Id. Then (4) is equivalent to

find x e Cn Argmin f « —
and Problem 3 is equivalent to
find x € C such that (Yy € C) (y — x| Vf(x)) >0,

ey minimize f(x).
xeC
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Intuition: relaxed problem

Example 2 of Problem 3

Let C = H and let f, g be proper convex Isc functions.

Instance of (4): Find x € Argminf N Argmin g
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Intuition: relaxed problem

Example 2 of Problem 3

Let C = H and let f, g be proper convex Isc functions.

Instance of (4): Find x € Argminf N Argmin g

Common relaxation
i L
minimize 5 (f(x) + 9(x))
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Intuition: relaxed problem

Example 2 of Problem 3

Let C = H and let f, g be proper convex Isc functions.

Instance of (4): Find x € Argminf N Argmin g

(one instance of the)
Common relaxation New relaxation

mir;ierp{ize $(F(X) + 9(x)) Find x € Fix (3 (prox; + prox,))
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Intuition: relaxed problem

Example 2 of Problem 3

Let C = H and let f, g be proper convex Isc functions.

Instance of (4): Find x € Argminf N Argmin g

(one instance of the)
Common relaxation New relaxation

mir;ierp{ize $(F(X) + 9(x)) Find x € Fix (3 (prox; + prox,))

Both are valid relaxations of (4) and have broad guarantees of
existence of solutions. Yet, they are distinct!

This leads to a new method for regularization!

Existence of solutions and a block-iterative algorithm for finding them:

@ P L. Combettes and ZCW, A variational inequality model for the
construction of signals from inconsistent nonlinear equations,

SIAM J. Imaging Sci., vol. 15, no. 1, pp. 84-109, 2022.
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Existence results

Notation: N¢ is the normal cone operator of C.

Problem 3 admits a solution in each of the following instances.
Q@ > wilipi € ran(Ne + Y wilf o FoLy).
© C is bounded.
© ranNc + 3, wilj (ranf) = H.
@ rorsomei e |, L} is surjective and one of the following holds:
Ly (ranF) = H.
F; is surjective.
IF(Y)Il = +oo as [yl = +oo.
ran(ld — F;) is bounded.

There exists a continuous convex function g;: Gi — R
such that f; = proxg,.

090000
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Algorithm

Adapting an algorithm from

@ P L. Combettes and L.
E. Glaudin, Solving
composite fixed point
problems with block
updates

Adv. Nonlinear Anal.,
vol. 10, pp. 1154-1177,
2021.

we arrive at a
block-iterative solution
method.

Let xo € H.let v €]0,2[, and, forevery i € /,
let f; _y € # and set ~; = v/||Li||?. Iterate

forn=0,1,...

4} = Ihcl

forevery i € I,

L fin = Xn — vili (Fi(Lan) — pi)
forevery iel\ Iy

[ 7"i,n - 7('I,r‘p—1

m
Xni1 = Projc ( Zwﬂ‘i,n> :

i=1

Then under a mild condition on (/n)nen.
(Xn)nen converges weakly to a solution to
Problem 3.
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Numerics: inconsistent image recovery

Experiment: C = [0,255]N (N = 256?), given noisy estimates of:
@ Mean pixel value
@ Fourier phase
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Numerics: inconsistent image recovery

Experiment: C = [0,255]N (N = 256?), given noisy estimates of:
@ Mean pixel value
@ Fourier phase
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Numerics: promoting sparsity

Experiment: Given C = [0, 255]" (N = 256) and
@ A low rank approximation.
@ X is sparse.

he actions arc few and p
efined to a larger colle
ential to retain the str

efinement, Because of t

level will grestly infl

re is insufficient infor

e should decide as 1littl

be made in an arbitrary
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Numerics: promoting sparsity

Experiment: Given C = [0, 255]" (N = 256) and

@ A low rank approximation. JLeIIeILEE .
A Fox = p2 & x € argmin]| - ||

@ Xissparse. So, wesety=1.5,

F» =1d — prox. ., = Projg_ (g,,) aNd p2 = 0.

he actions arc few and p he asotiang avc fom and p

efined to a larger colle efinod to 8 larger eells
ential to retain the st entinl tn rEtnin thae 8vr
efinement, Because of t e finamsnr . Boeooone of ¢

teuvel will grestly infl

level will grestly infl

re is insufficient infor ré in tnauffioiant infor

e should decide as 1littl e should dectde as 11ted

ha mnds in an athivenrs

be made in an arbitrary
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Numerics: promoting sparsity

F is expensive to compute.

-20

-25

-30

| | | | | | | |
0 200 400 600 800 1,000 1,200 1,400 1,600

Relative error (dB) versus execution time (seconds) for full-activation,
i.e., I, = I versus block activation, i.e.,
{1,2}, if n=0 mod 5;

(vnen) /”_{{2}, if N#£0 mod 5.
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Inconsistent feasibility

Goal: Separate the background of stars X, from the galaxy X,, given
C =[0,255]N (N = 600?%) and
@ A low rank approximation of the superposition X7 + X»

@ X, is sparse and X, is sparse under the discrete cosine transform
L: RN - RN, We set Ly: (x1,%) — (X1, 1%), p, =0, and
Fo: (W1, y2) v (projsoo(o;m) Y1, Projg__ (0.45) Y2).
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