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Motivation: the linear setting

Youla’s Model, 1978

Let U1 and U2 be closed vector subspaces of a real
Hilbert space H. Given p ∈ U2,

find x ∈ U1 such that projU2
x = p.

This can be solved using projection methods.

Example: Bandlimited extrapolation (Papoulis, 1975)

Let σ > 0, D ⊂ R, and p = x |D.
Goal: find x such that{

p = x |D a.e.
x̂ = 0 outside of [−σ, σ] a.e.

Original signal:
x(t)

t

D

Given info:
p(t)

t

D

σ−σ

x̂(ω)

ω
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Extension of the linear setting

Combettes & Reyes, 2010

Let K be a finite set. For every k ∈ K , let Uk be a closed vector
subspace of H, and let pk ∈ Uk . The goal is to

find x ∈ H such that (∀k ∈ K ) projUk
x = pk .

Projection methods are available for finding solutions.

This model captures linear a priori constraints, since for any vector
subspace U ⊂ H, x ∈ U ⇔ projU⊥x = 0.

However, there are many applications in which we seek to solve

(∀k ∈ K ) Fkx = pk ,

where (Fk)k∈K are nonlinear operators on a real Hilbert space H.
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Our setting

Let H be a real Hilbert space. The operator F : H → H is firmly
nonexpansive if

(∀(x , y) ∈ H2) ‖Fx − Fy‖2 6 ‖x − y‖2 − ‖(Id− F)x − (Id− F)y‖2.

General enough to capture many applications.

Sufficiently structured to yield tractable, efficient algorithms which
converge to a solution from any initial point.

Special case: Proximity operators (e.g., Projections onto closed
convex sets.)
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Roadblocks

Let F : H → H be firmly nonexpansive.

How do we enforce that Fx = p?

Difficulties:

‖F(·)− p‖ is typically nonconvex.

Convex minimization tools cannot be used.
Guarantees of convergence to a solution are rare.

In general, projecting onto F−1({p}) is not possible.

Cannot be solved using projection methods.
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Examples: projections

Dimension reductionand saturation

Hard clipping
x(t)

t

F(ξ)

ξ

p(t)

t
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Examples

Soft clipping
x(t)

t

F(ξ)

ξ

p(t)

t

Mixing firmly nonexpansive operators via superposition and/or
composition with bounded linear operators (up to rescaling by a
known strictly positive constant)

Input

L1 F1 L∗1

+
Output

L∗2F2L2
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Examples: “proxification”

Definition: Given Q : H → H and q ∈ ranQ, (Q,q) is proxifiable if there
exists F : H → H which is firmly nonexpansive and p ∈ ranF such that

(∀x ∈ H) Qx = q ⇔ Fx = p

Example: Hard thresholding at level γ > 0 and soft thresholding

hardγ : ξ 7→

{
ξ, if |ξ| > γ;

0, if |ξ| 6 γ,
softγ : ξ 7→ sign(ξ)max{|ξ| − γ, 0}

(1)

x(t)

t

hardγ (ξ)

ξ

q(t)

t

softγ (ξ)

ξ

p(t)

t
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Examples: “proxification”

Let H = RN×M , set s = min{N,M}, let γ > 0, and
denote the singular value decomposition of
x ∈ H by

x = Ux diag (σ1(x), . . . , σs(x))V>x . (2)

A low rank approximation q of x is

Ux diag
(

hardγ
(
σ1(x)

)
, . . . , hardγ

(
σs(x)

))
V>x .

(3)
We can enforce that an image has a prescribed
low rank approximation:

Set
F : H → H : x 7→
Ux diag

(
softγ

(
σ1(x)

)
, . . . , softγ

(
σs(x)

))
V>x ,

and construct p by shifting the nonzero singular
values of q by −γ.
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Feasibility

We seek to recover a signal x in a real Hilbert space H from

A finite number of transformations (pk)k∈K of the form

Fkx = pk ,

where Fk : H → H is firmly nonexpansive.

A finite number of constraints in the form of closed, convex sets
(Cj)j∈J model properties of x which are known a priori
(e.g. pixel ranges, phase information, . . . ).

Problem 1

find x ∈
⋂
j∈J

Cj︸ ︷︷ ︸
Prior information

such that (∀k ∈ K ) Fkx = pk︸ ︷︷ ︸
Transformations

,

assuming at least one solution exists.
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Foregoing minimization: directly to fixed points.

Main ingredients:

For every k ∈ K , set Tk = Id− Fk + pk .

Fix Tk = F−1
k

(
{pk}

)
=

{
x ∈ H | Fkx = pk

}
Tk is firmly nonexpansive

x solves the main problem if and only if

x ∈

⋂
j∈J

Fix projCj

 ∩(⋂
k∈K

Fix Tk

)
,

which is just a common fixed point problem involving firmly
nonexpansive operators!

Algorithm and numerics:

P. L. Combettes and ZCW, A fixed point framework for
recovering signals from nonlinear transformations,
2020 Proc. Eur. Signal Process. Soc., pp. 2120–2124.
Amsterdam, The Netherlands, Jan. 18–22, 2021.
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Inconsistent feasibility

Let C ⊂ H be nonempty closed and convex and let I be finite. For
every i ∈ I, let Gi be a real Hilbert space, let pi ∈ Gi , let Li : H → Gi be a
nonzero bounded linear operator, and let Fi : Gi → Gi be a firmly
nonexpansive operator. The goal is to

find x ∈ C such that (∀i ∈ I) Fi(Lix) = pi , (4)

but noise or poor modeling can make (4) inconsistent.

Problem 3: A variational inequality relaxation of (4)

Let (ωi)i∈I be real numbers in ]0, 1] such that
∑

i∈I ωi = 1.

find x ∈ C such that (∀y ∈ C)
∑
i∈I

ωi〈Li(y − x) | Fi(Lix)− pi〉 > 0.

If (4) has a solution, then it is equivalent to Problem 3.

Problem 3 is guaranteed to possess solutions under mild
conditions.
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Intuition: relaxed problem

Example 1 of Problem 3

Let β > 0 and let f : H → R be convex with a
β−1-Lipschitzian gradient. Set F1 = β∇f , p1 = 0,
and L1 = Id. Then (4) is equivalent to

find x ∈ C ∩ Argmin f

and Problem 3 is equivalent to

find x ∈ C such that (∀y ∈ C) 〈y − x | ∇f (x)〉 > 0,

i.e., minimize
x∈C

f (x).

x y

C
∇f (x)
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Intuition: relaxed problem

Example 2 of Problem 3

Let C = H and let f , g be proper convex lsc functions.

Instance of (4): Find x ∈ Argmin f ∩ Argmin g

Common relaxation

minimize
x∈H

1
2 (f (x) + g(x))

(one instance of the)

New relaxation

Find x ∈ Fix ( 1
2 (proxf + proxg))

Both are valid relaxations of (4) and have broad guarantees of
existence of solutions. Yet, they are distinct!

This leads to a new method for regularization!

Existence of solutions and a block-iterative algorithm for finding them:

P. L. Combettes and ZCW, A variational inequality model for the
construction of signals from inconsistent nonlinear equations,

SIAM J. Imaging Sci., vol. 15, no. 1, pp. 84–109, 2022.
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existence of solutions. Yet, they are distinct!

This leads to a new method for regularization!

Existence of solutions and a block-iterative algorithm for finding them:

P. L. Combettes and ZCW, A variational inequality model for the
construction of signals from inconsistent nonlinear equations,

SIAM J. Imaging Sci., vol. 15, no. 1, pp. 84–109, 2022.
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Existence results

Notation: NC is the normal cone operator of C.

Proposition

Problem 3 admits a solution in each of the following instances.

1
∑

i∈I ωiL∗i pi ∈ ran(NC +
∑

i∈I ωiL∗i ◦ Fi ◦ Li).

2 C is bounded.

3 ranNC +
∑

i∈I ωiL∗i (ranFi) = H.

4 For some i ∈ I, L∗i is surjective and one of the following holds:

1 L∗i (ranFi) = H.
2 Fi is surjective.
3 ‖Fi(y)‖ → +∞ as ‖y‖ → +∞.
4 ran(Id− Fi) is bounded.
5 There exists a continuous convex function gi : Gi → R

such that Fi = proxgi
.
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Algorithm

Adapting an algorithm from

P. L. Combettes and L.
E. Glaudin, Solving
composite fixed point
problems with block
updates

Adv. Nonlinear Anal.,
vol. 10, pp. 1154–1177,
2021.

we arrive at a
block-iterative solution
method.

Let x0 ∈ H, let γ ∈ ]0, 2[, and, for every i ∈ I,
let ti,−1 ∈ H and set γi = γ/‖Li‖2. Iterate

for n = 0, 1, . . .

Ø 6= In ⊂ I
for every i ∈ In⌊

ti,n = xn − γiL∗i
(
Fi(Lixn)− pi

)
for every i ∈ I r In⌊

ti,n = ti,n−1

xn+1 = projC

(
m∑

i=1

ωi ti,n

)
.

Then under a mild condition on (In)n∈N,
(xn)n∈N converges weakly to a solution to
Problem 3.
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Numerics: inconsistent image recovery

Experiment: C = [0, 255]N (N = 2562), given noisy estimates of:

Mean pixel value

Fourier phase

A blurred and saturated observation

This problem is inconsistent.
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Numerics: promoting sparsity

Experiment: Given C = [0, 255]N (N = 256) and

A low rank approximation.

x is sparse.

So, we set γ = 1.5,
F2 = Id− proxγ‖·‖1

= projB∞(0;γ) and p2 = 0.

Motivation:
F2x = p2 ⇔ x ∈ argmin‖ · ‖1.
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Numerics: promoting sparsity

F1 is expensive to compute.
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Relative error (dB) versus execution time (seconds) for full-activation,
i.e., In = I versus block activation, i.e.,

(∀n ∈ N) In =

{
{1, 2}, if n ≡ 0 mod 5;
{2}, if n 6≡ 0 mod 5.
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Inconsistent feasibility

Goal: Separate the background of stars x1 from the galaxy x2, given
C = [0, 255]N (N = 6002) and

A low rank approximation of the superposition x1 + x2

x1 is sparse and x2 is sparse under the discrete cosine transform
L : RN → RN . We set L2 : (x1, x2) 7→ (x1, Lx2), p2 = 0, and
F2 : (y1, y2) 7→ (projB∞(0;10)y1,projB∞(0;45)y2).
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