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What is optimization?

Optimization in a nutshell (H = Rn or any real Hilbert space)

• Objective function f : H → R ∪ {+∞}.
e.g., data fidelity in ML, energy efficiency, profit, statistical error, . . .

• An “optimal” x ∈ H makes f (x) the smallest or largest
e.g., minimize error, maximize efficiency

image: towardsdatascience.com

minimize
x∈H

f (x)

Constraint set(s) C ⊂ H
e.g., RN

+, SN
+, hypercube, solution set of an

inverse problem, . . .

ιC (x) =
{

0 if x ∈ C
+∞ otherwise.

minimize
x∈C

f̃ (x) = minimize
x∈H

f̃ (x) + ιC (x)︸ ︷︷ ︸
f
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Modeling via optimization

[Torelli et al., Med. Phys., 2023]
image: [Fu et al., Tech. Cancer Res. Treatment, 2023]

[Sartori & Buriol, Comput. Oper. Res., 2020]
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Modeling via optimization

[Combettes & ZW., SIAM J. Imaging Sci., 2022]
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Some fundamental questions

• What are the roadblocks to provably solving optimization problems?
→ Nonconvexity, nonsmoothness, and bears – oh my!

• What theoretically-sound algorithms exist, and can we do better?
→ Splitting, Parallelization, Extrapolation, Asynchronous computation
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Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

Let Γ0(H) = {f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks
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“Traditioooon”-Tevye, Fiddler on the Roof

f is L-smooth (L > 0) if it is differentiable and ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖.
f =

∑
16i6m

fi

Gradient Descent
Let f : H → R be L-smooth and suppose Argmin f 6= ∅. Let x0 ∈ H,
ε > 0 and for every n ∈ N, set

xn+1 = xn − λn∇f (xn), where λn ∈
[
ε,

2
L − ε

]
(GD)

If f ∈ Γ0(H), then (xn)n∈N converges to a minimizer of f .

x0x1
x2
x3

x4
x5
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Foe #1: Non-convexity

f is L-smooth (L > 0) if it is differentiable and ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖.
f =

∑
16i6m

fi

Gradient Descent
Let f : H → R be L-smooth and suppose Argmin f 6= ∅. Let x0 ∈ H,
ε > 0 and for every n ∈ N, set

xn+1 = xn − λn∇f (xn), where λn ∈
[
ε,

2
L − ε

]
(GD)

If f 6∈ Γ0(H), then (xn)n∈N coverges to a stationary point︸ ︷︷ ︸.
(∇f (x∗) = 0)

For x0 sufficiently close to a minimizer, (xn)n∈N converges to one.

x0x1
x2
x3

x4
x5
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“Traditioooon”-Tevye, Fiddler on the Roof

f is L-smooth (L > 0) if it is differentiable and ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖.
f =

∑
16i6m

fi

Stochastic Gradient Descent (one variant)

Let f : H → R be L-smooth and suppose Argmin f 6= ∅. Let x0 ∈ H
and for every n ∈ N, set

xn+1 = xn −
1

n + 1∇fin (xn), where in ∼ U({1, . . . ,m}) (SGD)

If f ∈ Γ0(H), then E[f (xn)] converges to infx∈H f (x).

x0x1
x2
x3

x4
x5
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Why can’t we take the eagles to Mordor?
(A reasonable question to ask, if we didn’t read the books)

A common paradigm:
1. Define an objective function
2. Optimize with an efficient

algorithm, e.g., SGD with
algorithmic differentiation (AD)

Issue: For many objective functions, a
gradient does not exist.

[Pontil et al., Numer. Algorithms, 2019]
Training a sparse linear binary classifier

minimize
x∈Rn

∑
i∈I1

max{0, 1− 〈x | ai〉}+∑
i∈I2

max{0, 1 + 〈x | ai〉}+ λ‖x‖1
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Foe #2: Non-differentiability
A common paradigm:

1. Define an objective function
2. Optimize with an efficient

algorithm, e.g., SGD with
algorithmic differentiation (AD)

Issue: For many objective functions, a
gradient does not exist.

[Pontil et al., Numer. Algorithms, 2019]
Training a sparse linear binary classifier
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Engineers*:

image: ripleys.com

*:Some mathematicians at heart exceptions exist
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How do we solve ∇f = 0 when ∇f doesn’t exist?
A subgradient g ∈ H of f : H →]−∞,+∞] at x ∈ H satisfies

(∀y ∈ H)
〈
y − x

∣∣∣ g〉+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .
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How do we solve ∇f = 0 when ∇f doesn’t exist?
If f ∈ Γ0(H) is differentiable at x ∈ H, then

(∀y ∈ H)
〈
y − x

∣∣∣∇f (x)
〉

+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .
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Example: f = | · |: What do we do at zero? ∂f (0) = [−1, 1]
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How do we solve ∇f = 0 when ∇f doesn’t exist?
A subgradient g ∈ H of f : H →]−∞,+∞] at x ∈ H satisfies

(∀y ∈ H)
〈
y − x

∣∣∣ g〉+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .

∂f is useful for developing both optimality criterion︸ ︷︷ ︸
0∈∂f (x)

and algorithms.
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Goal: “0 ∈ ∂f (x)”. Which path do we take?

image: centralldm.es
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Goal: “0 ∈ ∂f (x)”. Which path do we take?

Some provenly-convergent (first-order) algorithm classes:
• Subgradient-projections (e.g., in [C. & ZW, IEEE EUSIPCO, 2020])
• Proximity operators (e.g., in [C., B., & ZW, IEEE ICASSP, 2022], [C. & ZW, J.

Approx. Theory, 2021], [C. & ZW, SIAM J. Imaging Sci., 2023])
• Conditional Gradient / “Frank-Wolfe” (e.g., in [ZW & P., 2024], [K., P., W., &

ZW, Opt. Methods. Softw., 2024])
• Abs-smooth Optimization (e.g., [K., P., W., & ZW, Opt. Methods. Softw., 2024])
• Bundle methods, Barrier methods, Lagrangian methods, . . .
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Theoretically-sound optimization

1. Motivation

2. Background: Theory vs practice

3. Proximity operators: Algorithmic bells and whistles

4. Splitting FW: What if the “usual” tools fail us?

5. More adventuring
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Proximity operators: a new hope

The proximity operator of f at x ∈ H is

proxf (x) = Argmin
u∈H

f (u) + 1
2‖x − u‖2

→ For f ∈ Γ0(H) and x ∈ H, proxf (x) is unique. Defines an operator proxf : H → H.
→ Projection onto closed convex set C : proxιC (x) = Argmin u∈C‖x − u‖2 = projC x .
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u∈H

f (u) + 1
2‖x − u‖2

→ For f ∈ Γ0(H) and x ∈ H, proxf (x) is unique. Defines an operator proxf : H → H.
→ Projection onto closed convex set C : proxιC (x) = Argmin u∈C‖x − u‖2 = projC x .
→ [Martinet, Fr. Inf. Rech. Oper., 1970] (translated / modernized):

Let f ∈ Γ0(H) be such that Argmin f 6= ∅.Let γ > 0, x0 ∈ H, and set

xn+1 = proxγf xn.

Then (xn)n∈N ⇀ x∗ ∈ Argmin f .
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→ [Martinet, Fr. Inf. Rech. Oper., 1970] (translated / modernized):

Let f ∈ Γ0(H) be such that Argmin f 6= ∅.Let γ > 0, x0 ∈ H, and set

xn+1 = proxγf xn.

Then (xn)n∈N ⇀ x∗ ∈ Argmin f . Issue: proxf might be hard to compute.
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Evolution of prox-based algorithms
f =

∑
16i6m

fi

(proxfi )16i6m are simpler than proxf .
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Evolution of prox-based algorithms
f =

∑
16i6m

fi

(proxfi )16i6m are simpler than proxf .

Open-source repo’s:
Python/Matlab:
proximity-operator.net,
Julia:
ProximalOperators.jl (Github)

https://proximity-operator.net/
https://juliafirstorder.github.io/ProximalOperators.jl/latest/


17

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms
f =

∑
16i6m

fi

(proxfi )16i6m are simpler than proxf .

Algorithmic “Splitting” mentality:

proxf

proxf1 , . . . proxfm
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Evolution of prox-based algorithms
f =

∑
16i6m

fi

(proxfi )16i6m are simpler than proxf .

Algorithmic “Splitting” mentality:

proxf

proxf1 , . . . proxfm

Pseudocode for many proximal splitting algorithms*

Require: Point x0 ∈ H, objective function f
1: for n = 0, 1 to . . . do
2: # Preprocess xn
3: for i = 1 to m do
4: yi ,n+1 ← evaluation of proxfi (·)
5: end for
6: xn+1 ← combine (yi ,n+1)16i6m
7: end for

*:e.g., Douglas-Rachford, ADMM, Chambolle-Pock,
Forward-backward, Augmented Lagrangian, . . .
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Evolution of prox-based algorithms
f =

∑
16i6m

fi
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Pseudocode for block-iterative proximal splitting algorithms

Require: Point x0 ∈ H, objective function f
1: for n = 0, 1 to . . . do
2: # Preprocess xn; Select In ⊂ {1, . . . ,m}
3: for i = 1 to m do
4: if i ∈ In then
5: yi ,n+1 ← evaluation of proxfi (·)
6: else
7: yi ,n+1 ← yi ,n
8: end if
9: end for

10: xn+1 ← combine (yi ,n+1)16i6m
11: end for
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Block activation for image recovery (m = 2)
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[C. & ZW, SIAM J. Imaging Sci., 2022] Relative error
for full-activation (In = I) versus block activation: In =

{
{1, 2}, if n ≡ 0 mod 5;
{2}, if n 6≡ 0 mod 5.
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Evolution of prox-based algorithms
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∑

16i6m
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Pseudocode for block-iterative proximal splitting algorithms*

Require: Point x0 ∈ H, objective function f
1: for n = 0, 1 to . . . do
2: # Preprocess xn; Select In ⊂ {1, . . . ,m}
3: for i = 1 to m do
4: if i ∈ In then
5: yi ,n+1 ← evaluation of proxfi (·)
6: else
7: yi ,n+1 ← yi ,n
8: end if
9: end for

10: xn+1 ← combine (yi ,n+1)16i6m
11: end for
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Evolution of prox-based algorithms

f =
∑

16i6m
fi

Two (currently separate) approaches:
→ Asynchronous updates
→ Extrapolated updates

Pseudocode for block-iterative proximal splitting algorithms*

Require: Point x0 ∈ H, objective function f
1: for n = 0, 1 to . . . do
2: # Preprocess xn; Select In ⊂ {1, . . . ,m}
3: for i = 1 to m do
4: if i ∈ In then
5: yi ,n+1 ← evaluation of proxfi (·)
6: else
7: yi ,n+1 ← yi ,n
8: end if
9: end for

10: xn+1 ← combine (yi ,n+1)16i6m
11: end for
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Evolution of prox-based algorithms
Parallel and Synchronous
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Evolution of prox-based algorithms
Parallel and Synchronous

Parallel and Asynchronous
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Asynchrony: Projective Splitting Algorithms

[Eckstein & Svaiter, Math Prog. A, 2008]:
Coined “Projective splitting” (synchronous, not block-iterative).
[Combettes & Eckstein, Math Prog. B, 2018]:
Convergence proof with asynchronous block-iterative updates!
[Combettes, Búi, & ZW, IEEE ICASSP, 2022]:
Numerical analysis (space and time complexity). For ML (training classifiers) and
image processing, works better than other algorithms in its class.
Only studied synchronous case!

Dua, Goel, Sharma, & ZW (ongoing work):
Analysis and experimentation for asynchronous case. AsyncProx.jl in development.
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Over-relaxation (extrapolation)
Given a “descent direction” d (e.g., combination of (yi ,n+1)16i6m) from x ∈ H,

x+ = (1− α)x + α(x + d)

0 6 α < 1: under-relaxation

1 < α: over-relaxation

x

x+ d

f

f
0 ≤ α < 1

1 < α

xn+1 = xn − αn
1
L∇f (xn), where αn ∈ [ε, 2− ε] (GD)

= (1− αn)xn + αn

(
xn−

1
L∇f (xn)

)
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Over-relaxation for fixed-point problems
[Combettes & ZW, J. Approx. Theory, 2021]:
A strongly-convergent algorithm with affine-convex extrapolation.
Example: EEG data (minimal-norm solution to an ill-posed nonlinear inverse problem;

recovery after 1000 iterations, < 1 minute.)
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Recovery with affine extrapolation
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Recovery without affine extrapolation
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Theoretically-sound optimization

1. Motivation

2. Background: Theory vs practice

3. Proximity operators: Algorithmic bells and whistles

4. Splitting FW: What if the “usual” tools fail us?

5. More adventuring
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They stole my horse!

Splitting problem setup

Given a smooth function f : Rn → R and compact convex sets (Ci )16i6m

minimize f (x) subject to x ∈
⋂

16i6m
Ci , (?)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

What if (projCi )16i6m are too expensive? ← e.g., in high-dimensional settings!
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A spark of inspiration

Frank-Wolfe / “Conditional gradient” alg. [Naval Res. Logist. Quart., 1956]

Given a smooth function f : Rn → R and a nonempty compact
convex set C ,

minimize f (x) subject to x ∈ C

Instead of projecting, use a linear minimization oracle of C ,

LMOC : y 7→ p ∈ Argmin x∈C 〈y | x〉 (LMO)

xn+1 = xn + 1
n + 1

(
LMOC

(
∇f (xn)

)
− xn

)

Marguerite Frank

Philip Wolfe
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efficiency(LMOs) == efficiency(lembus bread)
[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, C , projC is more expensive than LMOC .
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . . )

Example: Nuclear norm ball

For x ∈ Rn×n

‖x‖nuc =
∑

16i6n
σi (x).

For β > 0, C = {x ∈ Rn×n | ‖x‖nuc 6 β},

projC (x): requires a full SVD!
(σ1, . . . , σn,U,V ), where x = Udiag(σ1, . . . , σn)V>

LMOC (x): requires only first singular value/vectors
(σ1,U1,V>1 )

Full SVD

n = 500: 0.11 sec

n = 1000: 0.47 sec

n = 2000: 4.87 sec

Just (σ1,U1,V>1 )

n = 500: 0.0081 sec

n = 1000: 0.056 sec

n = 2000: 0.638 sec
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Sure would be nice if we could use splitting. . .

minimize f (x) subject to x ∈
⋂

16i6m
Ci , (?)

Issue: Computing the LMO for ⋂16i6m Ci is prohibitively expensive.
(LMOCi )16i6m are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂
16i6m Ci

)
Relatively little has been done in this field.
→ Unlike projections, LMOs are discontinuous.
→ “State-of-the-art” relies on inexact prox-based algorithms.
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It’s aliiive!
[ZW & P, 2024]: Split Conditional Gradient Algorithm

Require: Point x0 ∈ 1
m
∑

16i6m Ci , smooth function f
1: for t = 0, 1 to . . . do
2: Choose penalty parameter λt ∈ ]0,+∞[
3: Choose step size γt ∈ ]0, 1]
4: gt ← ∇f (xt)
5: for i = 1 to m do
6: v i

t ← LMOCi (gt + λt(x i
t − xt))

7: x i
t+1 ← x i

t + γt(v i
t − x i

t)
8: end for
9: xt+1 ← 1

m
∑

16i6m x i
t+1

10: end for

Practical advantages:
→ Uses individual LMOs
→ Lowest-known # LMO calls:

one LMO per set (per iteration)

Q: Does it actually solve (?)?
A: Yes.

γt = O(1/
√

t) and
λt = O(ln t) work.
(whether or not f is convex).
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Convergence

Theorem ([ZW & P., 2024])

Let f be L-smooth and let (Ci )16i6m be nonempty compact convex subsets of H such
that ⋂16i6m Ci 6= ∅. Let λ0 > 0 and λt+1 = λt + (

√
t + 2)−2 and γt = 2/(

√
t + 2).

If f is convex, then

f

 1
m

∑
16i6m

x i
t

→ inf
x∈
⋂

16i6m Ci
f (x)

and every accumulation point x∞ of (xt)t∈N produces a solution
1
m
∑

16i6m x i
∞ ∈

⋂
16i6m Ci such that f ( 1

m
∑

16i6m x∞) = infx∈
⋂

16i6m Ci
f (x).

Nonconvex convergence results too: arXiv:2311.05381

https://arxiv.org/abs/2311.05381
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Theoretically-sound optimization

1. Motivation

2. Background: Theory vs practice

3. Proximity operators: Algorithmic bells and whistles

4. Splitting FW: What if the “usual” tools fail us?

5. More adventuring
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Abs-smooth optimization

Abs-smooth functions f include compositions of
smooth functions, max, min, and | · |. . . .
→ Loss functions for multilayer Neural Networks

with smooth and/or ReLU activation.
→ Allows one to find a local minimizer on

non-convex objective functions!
→ Future work: Improve scalability.



32

Motivation Background Prox Algorithms What if. . . More adventuring References

Nonlinear inverse problems

x

p1

pm

pi

...

...

L1 F1

Lm Fm

Li Fi

Given (pi )16i6m, find x∗ ∈ H such that

(∀i ∈ {1, . . . ,m}) Fi (Lix∗) = pi

Li are bounded linear operators, and
Fi ≈ proximity operators.
→ To-do: Stability analysis
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Outlook and future work

• Improved convergence rates and acceleration
• Block-iterative Frank-Wolfe algorithms
• Efficient prox/ LMO algorithms
• . . .

Potential collaborators: Hala Nelson, Minah Oh, Roger Thelwell, and more!

For students:
Proofs (MATH 245), sequences and series (236), gradients (237),
linear algebra (238/300/434), optimization theory (340), coding experience
(248/250/448/449), analysis (410/411).
REUs & Grad School in Berlin: iol.zib.de (Opt/ML), math-berlin.de

https://iol.zib.de/
https://www.math-berlin.de/
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Thank you for your attention!
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Supplement

f =
∑

16i6m
fi

(proxfi )16i6m are simpler than proxf .

e.g., Find x ∈ Sn
+ ∩ [α, β]N×N

minimize
x∈Rn

ιSn
+

(x) + ι[α,β]N (x)

proxf is intractable.
proxf1 = proj[α,β]N

proxf2 = projSn
+

 known in closed-form.
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