
1

Motivation Background Prox Algorithms What if. . . More adventuring References

A quest for
theoretically-sound
optimization
Zev Woodstock
Technische Universität Berlin & Zuse Institute Berlin
February 2024

mailto:woodstock@zib.de

2

Motivation Background Prox Algorithms What if. . . More adventuring References

“How did I get here?”-David Byrne

Lise
6.05 – 8 petaflop/second
(roughly 75 – 100 IBM Watsons)

2

Motivation Background Prox Algorithms What if. . . More adventuring References

“How did I get here?”-David Byrne

Lise
6.05 – 8 petaflop/second
(roughly 75 – 100 IBM Watsons)

3

Motivation Background Prox Algorithms What if. . . More adventuring References

Theoretically-sound optimization

1. Motivation

2. Background: Theory vs practice

3. Proximity operators: Algorithmic bells and whistles

4. Splitting FW: What if the “usual” tools fail us?

5. More adventuring

4

Motivation Background Prox Algorithms What if. . . More adventuring References

What is optimization?

Optimization in a nutshell (H = Rn or any real Hilbert space)

• Objective function f : H → R ∪ {+∞}.
e.g., data fidelity in ML, energy efficiency, profit, statistical error, . . .

• An “optimal” x ∈ H makes f (x) the smallest or largest
e.g., minimize error, maximize efficiency

image: towardsdatascience.com

minimize
x∈H

f (x)

Constraint set(s) C ⊂ H
e.g., RN

+, SN
+, hypercube, solution set of an

inverse problem, . . .

ιC (x) =
{

0 if x ∈ C
+∞ otherwise.

minimize
x∈C

f̃ (x) = minimize
x∈H

f̃ (x) + ιC (x)︸ ︷︷ ︸
f

5

Motivation Background Prox Algorithms What if. . . More adventuring References

Modeling via optimization

[Torelli et al., Med. Phys., 2023]
image: [Fu et al., Tech. Cancer Res. Treatment, 2023]

[Sartori & Buriol, Comput. Oper. Res., 2020]

6

Motivation Background Prox Algorithms What if. . . More adventuring References

Modeling via optimization

image: towardsdatascience.com

6

Motivation Background Prox Algorithms What if. . . More adventuring References

Modeling via optimization

image: towardsdatascience.com

7

Motivation Background Prox Algorithms What if. . . More adventuring References

Modeling via optimization

[Combettes & ZW., SIAM J. Imaging Sci., 2022]

7

Motivation Background Prox Algorithms What if. . . More adventuring References

Modeling via optimization

[Combettes & ZW., SIAM J. Imaging Sci., 2022]

8

Motivation Background Prox Algorithms What if. . . More adventuring References

Some fundamental questions

• What are the roadblocks to provably solving optimization problems?
→ Nonconvexity, nonsmoothness, and bears – oh my!

• What theoretically-sound algorithms exist, and can we do better?
→ Splitting, Parallelization, Extrapolation, Asynchronous computation

8

Motivation Background Prox Algorithms What if. . . More adventuring References

Some fundamental questions

• What are the roadblocks to provably solving optimization problems?
→ Nonconvexity, nonsmoothness, and bears – oh my!

• What theoretically-sound algorithms exist?
→ Splitting, Parallelization, Extrapolation, Asynchronous computation

8

Motivation Background Prox Algorithms What if. . . More adventuring References

Some fundamental questions

• What are the roadblocks to provably solving optimization problems?
→ Nonconvexity, nonsmoothness, and bears – oh my!

• What theoretically-sound algorithms exist, and can we do better?
→ Splitting, Parallelization, Extrapolation, Asynchronous computation

9

Motivation Background Prox Algorithms What if. . . More adventuring References

Theoretically-sound optimization

1. Motivation

2. Background: Theory vs practice

3. Proximity operators: Algorithmic bells and whistles

4. Splitting FW: What if the “usual” tools fail us?

5. More adventuring

10

Motivation Background Prox Algorithms What if. . . More adventuring References

Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

Let Γ0(H) = {f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks

10

Motivation Background Prox Algorithms What if. . . More adventuring References

Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

Let Γ0(H) = {f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks

10

Motivation Background Prox Algorithms What if. . . More adventuring References

Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

f is convex if, for all x , y ∈ H and α ∈ (0, 1), f (αx + (1−α)y) 6 αf (x) + (1−α)f (y)

Let Γ0(H) = {f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks

10

Motivation Background Prox Algorithms What if. . . More adventuring References

Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

f is convex if, for all x , y ∈ H and α ∈ (0, 1), f (αx + (1−α)y) 6 αf (x) + (1−α)f (y)

Let Γ0(H) =

{f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks

10

Motivation Background Prox Algorithms What if. . . More adventuring References

Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

f is convex if, for all x , y ∈ H and α ∈ (0, 1), f (αx + (1−α)y) 6 αf (x) + (1−α)f (y)

4 Let Γ0(H) =

{f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks

10

Motivation Background Prox Algorithms What if. . . More adventuring References

Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

f is convex if, for all x , y ∈ H and α ∈ (0, 1), f (αx + (1−α)y) 6 αf (x) + (1−α)f (y)

4 8 Let Γ0(H) =

{f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks

10

Motivation Background Prox Algorithms What if. . . More adventuring References

Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

C is convex if, for all x , y ∈ C and α ∈ (0, 1), αx + (1− α)y ∈ C .

4 8 Let Γ0(H) =

{f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks

10

Motivation Background Prox Algorithms What if. . . More adventuring References

Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

f is convex if, for all x , y ∈ H and α ∈ (0, 1), f (αx + (1−α)y) 6 αf (x) + (1−α)f (y)

Let Γ0(H) = {f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks

10

Motivation Background Prox Algorithms What if. . . More adventuring References

Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

f is convex if, for all x , y ∈ H and α ∈ (0, 1), f (αx + (1−α)y) 6 αf (x) + (1−α)f (y)

Let Γ0(H) = {f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks

10

Motivation Background Prox Algorithms What if. . . More adventuring References

Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

f is convex if, for all x , y ∈ H and α ∈ (0, 1), f (αx + (1−α)y) 6 αf (x) + (1−α)f (y)

Let Γ0(H) = {f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks

10

Motivation Background Prox Algorithms What if. . . More adventuring References

Our setting
H is a real Hilbert space with inner product 〈· | ·〉,
e.g., Rn with the dot product 〈x | y〉 = xT y .

Argmin f =
{
x ∈ H | f (x) = inf f (H)

}
is the set of minimizers of f .

f is convex if, for all x , y ∈ H and α ∈ (0, 1), f (αx + (1−α)y) 6 αf (x) + (1−α)f (y)

Let Γ0(H) = {f : H → R ∪ {+∞}| f is convex, lower-semicontinuous, and proper},
e.g., ex , − ln(x), ‖ · ‖2, ReLU, Hinge loss, ‖Ax + b‖, ‖ · ‖1, ιC (C convex and closed),

sup{fi |i ∈ I}, affine composition, positive linear combinations, ...
not ‖N (x)− d‖ for multilayer neural networks

11

Motivation Background Prox Algorithms What if. . . More adventuring References

“Traditioooon”-Tevye, Fiddler on the Roof

f is L-smooth (L > 0) if it is differentiable and ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖.
f =

∑
16i6m

fi

Gradient Descent
Let f : H → R be L-smooth and suppose Argmin f 6= ∅. Let x0 ∈ H,
ε > 0 and for every n ∈ N, set

xn+1 = xn − λn∇f (xn), where λn ∈
[
ε,

2
L − ε

]
(GD)

If f ∈ Γ0(H), then (xn)n∈N converges to a minimizer of f .

x0x1
x2
x3

x4
x5

11

Motivation Background Prox Algorithms What if. . . More adventuring References

“Traditioooon”-Tevye, Fiddler on the Roof

f is L-smooth (L > 0) if it is differentiable and ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖.
f =

∑
16i6m

fi

Gradient Descent
Let f : H → R be L-smooth and suppose Argmin f 6= ∅. Let x0 ∈ H,
ε > 0 and for every n ∈ N, set

xn+1 = xn − λn∇f (xn), where λn ∈
[
ε,

2
L − ε

]
(GD)

If f ∈ Γ0(H), then (xn)n∈N converges to a minimizer of f .

x0x1
x2
x3

x4
x5

11

Motivation Background Prox Algorithms What if. . . More adventuring References

Foe #1: Non-convexity

f is L-smooth (L > 0) if it is differentiable and ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖.
f =

∑
16i6m

fi

Gradient Descent
Let f : H → R be L-smooth and suppose Argmin f 6= ∅. Let x0 ∈ H,
ε > 0 and for every n ∈ N, set

xn+1 = xn − λn∇f (xn), where λn ∈
[
ε,

2
L − ε

]
(GD)

If f 6∈ Γ0(H), then (xn)n∈N coverges to a stationary point︸ ︷︷ ︸.
(∇f (x∗) = 0)

For x0 sufficiently close to a minimizer, (xn)n∈N converges to one.

x0x1
x2
x3

x4
x5

11

Motivation Background Prox Algorithms What if. . . More adventuring References

“Traditioooon”-Tevye, Fiddler on the Roof

f is L-smooth (L > 0) if it is differentiable and ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖.
f =

∑
16i6m

fi

Gradient Descent
Let f : H → R be L-smooth and suppose Argmin f 6= ∅. Let x0 ∈ H,
ε > 0 and for every n ∈ N, set

xn+1 = xn − λn∇f (xn), where λn ∈
[
ε,

2
L − ε

]
(GD)

If f ∈ Γ0(H), then (xn)n∈N converges to a minimizer of f .

x0x1
x2
x3

x4
x5

11

Motivation Background Prox Algorithms What if. . . More adventuring References

“Traditioooon”-Tevye, Fiddler on the Roof

f is L-smooth (L > 0) if it is differentiable and ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖.
f =

∑
16i6m

fi

Stochastic Gradient Descent (one variant)

Let f : H → R be L-smooth and suppose Argmin f 6= ∅. Let x0 ∈ H
and for every n ∈ N, set

xn+1 = xn −
1

n + 1∇fin (xn), where in ∼ U({1, . . . ,m}) (SGD)

If f ∈ Γ0(H), then E[f (xn)] converges to infx∈H f (x).

x0x1
x2
x3

x4
x5

12

Motivation Background Prox Algorithms What if. . . More adventuring References

Why can’t we take the eagles to Mordor?
(A reasonable question to ask, if we didn’t read the books)

A common paradigm:
1. Define an objective function
2. Optimize with an efficient

algorithm, e.g., SGD with
algorithmic differentiation (AD)

Issue: For many objective functions, a
gradient does not exist.

[Pontil et al., Numer. Algorithms, 2019]
Training a sparse linear binary classifier

minimize
x∈Rn

∑
i∈I1

max{0, 1− 〈x | ai〉}+∑
i∈I2

max{0, 1 + 〈x | ai〉}+ λ‖x‖1

12

Motivation Background Prox Algorithms What if. . . More adventuring References

Why can’t we take the eagles to Mordor?
(A reasonable question to ask, if we didn’t read the books)

A common paradigm:
1. Define an objective function
2. Optimize with an efficient

algorithm, e.g., SGD with
algorithmic differentiation (AD)

Issue: For many objective functions, a
gradient does not exist.

[Pontil et al., Numer. Algorithms, 2019]
Training a sparse linear binary classifier

image: adeveloperdiary.com

minimize
x∈Rn

∑
i∈I1

max{0, 1− 〈x | ai〉}+∑
i∈I2

max{0, 1 + 〈x | ai〉}+ λ‖x‖1

12

Motivation Background Prox Algorithms What if. . . More adventuring References

Why can’t we take the eagles to Mordor?
(A reasonable question to ask, if we didn’t read the books)

A common paradigm:
1. Define an objective function
2. Optimize with an efficient

algorithm, e.g., SGD with
algorithmic differentiation (AD)

Issue: For many objective functions, a
gradient does not exist.

[Pontil et al., Numer. Algorithms, 2019]
Training a sparse linear binary classifier

image: adeveloperdiary.com

minimize
x∈Rn

∑
i∈I1

max{0, 1− 〈x | ai〉}+∑
i∈I2

max{0, 1 + 〈x | ai〉}+ λ‖x‖1

12

Motivation Background Prox Algorithms What if. . . More adventuring References

Foe #2: Non-differentiability
A common paradigm:

1. Define an objective function
2. Optimize with an efficient

algorithm, e.g., SGD with
algorithmic differentiation (AD)

Issue: For many objective functions, a
gradient does not exist.

[Pontil et al., Numer. Algorithms, 2019]
Training a sparse linear binary classifier

image: adeveloperdiary.com

minimize
x∈Rn

∑
i∈I1

max{0, 1− 〈x | ai〉}+∑
i∈I2

max{0, 1 + 〈x | ai〉}+ λ‖x‖1

12

Motivation Background Prox Algorithms What if. . . More adventuring References

Foe #2: Non-differentiability
A common paradigm:

1. Define an objective function
2. Optimize with an efficient

algorithm, e.g., SGD with
algorithmic differentiation (AD)

Issue: For many objective functions, a
gradient does not exist.

[Pontil et al., Numer. Algorithms, 2019]
Training a sparse linear binary classifier

Engineers*:

image: ripleys.com

*:Some mathematicians at heart exceptions exist

minimize
x∈Rn

∑
i∈I1

max{0, 1− 〈x | ai〉}+∑
i∈I2

max{0, 1 + 〈x | ai〉}+ λ‖x‖1

13

Motivation Background Prox Algorithms What if. . . More adventuring References

How do we solve ∇f = 0 when ∇f doesn’t exist?
A subgradient g ∈ H of f : H →]−∞,+∞] at x ∈ H satisfies

(∀y ∈ H)
〈
y − x

∣∣∣ g〉+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .

13

Motivation Background Prox Algorithms What if. . . More adventuring References

How do we solve ∇f = 0 when ∇f doesn’t exist?
If f ∈ Γ0(H) is differentiable at x ∈ H, then

(∀y ∈ H)
〈
y − x

∣∣∣∇f (x)
〉

+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .

13

Motivation Background Prox Algorithms What if. . . More adventuring References

How do we solve ∇f = 0 when ∇f doesn’t exist?
A subgradient g ∈ H of f : H →]−∞,+∞] at x ∈ H satisfies

(∀y ∈ H)
〈
y − x

∣∣∣ g〉+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .

13

Motivation Background Prox Algorithms What if. . . More adventuring References

How do we solve ∇f = 0 when ∇f doesn’t exist?
A subgradient g ∈ H of f : H →]−∞,+∞] at x ∈ H satisfies

(∀y ∈ H)
〈
y − x

∣∣∣ g〉+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .

13

Motivation Background Prox Algorithms What if. . . More adventuring References

How do we solve ∇f = 0 when ∇f doesn’t exist?
A subgradient g ∈ H of f : H →]−∞,+∞] at x ∈ H satisfies

(∀y ∈ H)
〈
y − x

∣∣∣ g〉+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .
Example: f = | · |: What do we do at zero?

13

Motivation Background Prox Algorithms What if. . . More adventuring References

How do we solve ∇f = 0 when ∇f doesn’t exist?
A subgradient g ∈ H of f : H →]−∞,+∞] at x ∈ H satisfies

(∀y ∈ H)
〈
y − x

∣∣∣ g〉+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .
Example: f = | · |: What do we do at zero? ∂f (0) = [−1, 1]

13

Motivation Background Prox Algorithms What if. . . More adventuring References

How do we solve ∇f = 0 when ∇f doesn’t exist?
A subgradient g ∈ H of f : H →]−∞,+∞] at x ∈ H satisfies

(∀y ∈ H)
〈
y − x

∣∣∣ g〉+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .

Fermat’s Rule
Let x ∈ H. Then x ∈ Argmin f if and only if 0 ∈ ∂f (x).
Proof:

0 ∈ ∂f (x)⇔ (∀y ∈ H) 〈y − x |0〉+ f (x) 6 f (y)
⇔ (∀y ∈ H) f (x) 6 f (y)
⇔ x ∈ Argmin f

13

Motivation Background Prox Algorithms What if. . . More adventuring References

How do we solve ∇f = 0 when ∇f doesn’t exist?
A subgradient g ∈ H of f : H →]−∞,+∞] at x ∈ H satisfies

(∀y ∈ H)
〈
y − x

∣∣∣ g〉+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .

Fermat’s Rule
Let x ∈ H. Then x ∈ Argmin f if and only if 0 ∈ ∂f (x).
Proof:

0 ∈ ∂f (x)⇔ (∀y ∈ H) 〈y − x |0〉+ f (x) 6 f (y)
⇔ (∀y ∈ H) f (x) 6 f (y)
⇔ x ∈ Argmin f

13

Motivation Background Prox Algorithms What if. . . More adventuring References

How do we solve ∇f = 0 when ∇f doesn’t exist?
A subgradient g ∈ H of f : H →]−∞,+∞] at x ∈ H satisfies

(∀y ∈ H)
〈
y − x

∣∣∣ g〉+ f (x) 6 f (y).

The subdifferential ∂f (x) ⊂ H is the set containing all subgradients of f at x .

∂f is useful for developing both optimality criterion︸ ︷︷ ︸
0∈∂f (x)

and algorithms.

14

Motivation Background Prox Algorithms What if. . . More adventuring References

Goal: “0 ∈ ∂f (x)”. Which path do we take?

image: centralldm.es

14

Motivation Background Prox Algorithms What if. . . More adventuring References

Goal: “0 ∈ ∂f (x)”. Which path do we take?

Some provenly-convergent (first-order) algorithm classes:
• Subgradient-projections (e.g., in [C. & ZW, IEEE EUSIPCO, 2020])
• Proximity operators (e.g., in [C., B., & ZW, IEEE ICASSP, 2022], [C. & ZW, J.

Approx. Theory, 2021], [C. & ZW, SIAM J. Imaging Sci., 2023])
• Conditional Gradient / “Frank-Wolfe” (e.g., in [ZW & P., 2024], [K., P., W., &

ZW, Opt. Methods. Softw., 2024])
• Abs-smooth Optimization (e.g., [K., P., W., & ZW, Opt. Methods. Softw., 2024])
• Bundle methods, Barrier methods, Lagrangian methods, . . .

14

Motivation Background Prox Algorithms What if. . . More adventuring References

Goal: “0 ∈ ∂f (x)”. Which path do we take?

Some provenly-convergent (first-order) algorithm classes:
• Subgradient-projections (e.g., in [C. & ZW, IEEE EUSIPCO, 2020])
• Proximity operators (e.g., in [C., B., & ZW, IEEE ICASSP, 2022], [C. & ZW, J.

Approx. Theory, 2021], [C. & ZW, SIAM J. Imaging Sci., 2023])
• Conditional Gradient / “Frank-Wolfe” (e.g., in [ZW & P., 2024], [K., P., W.,

& ZW, Opt. Methods. Softw., 2024])
• Abs-smooth Optimization (e.g., [K., P., W., & ZW, Opt. Methods. Softw., 2024])
• Bundle methods, Barrier methods, Lagrangian methods, . . .

15

Motivation Background Prox Algorithms What if. . . More adventuring References

Theoretically-sound optimization

1. Motivation

2. Background: Theory vs practice

3. Proximity operators: Algorithmic bells and whistles

4. Splitting FW: What if the “usual” tools fail us?

5. More adventuring

16

Motivation Background Prox Algorithms What if. . . More adventuring References

Proximity operators: a new hope

The proximity operator of f at x ∈ H is

proxf (x) = Argmin
u∈H

f (u) + 1
2‖x − u‖2

→ For f ∈ Γ0(H) and x ∈ H, proxf (x) is unique. Defines an operator proxf : H → H.
→ Projection onto closed convex set C : proxιC (x) = Argmin u∈C‖x − u‖2 = projC x .

16

Motivation Background Prox Algorithms What if. . . More adventuring References

Proximity operators: a new hope

The proximity operator of f at x ∈ H is

proxf (x) = Argmin
u∈H

f (u) + 1
2‖x − u‖2

→ For f ∈ Γ0(H) and x ∈ H, proxf (x) is unique. Defines an operator proxf : H → H.
→ Projection onto closed convex set C : proxιC (x) = Argmin u∈C‖x − u‖2 = projC x .

16

Motivation Background Prox Algorithms What if. . . More adventuring References

Proximity operators: a new hope

The proximity operator of f at x ∈ H is

proxf (x) = Argmin
u∈H

f (u) + 1
2‖x − u‖2

→ For f ∈ Γ0(H) and x ∈ H, proxf (x) is unique. Defines an operator proxf : H → H.
→ Projection onto closed convex set C : proxιC (x) = Argmin u∈C‖x − u‖2 = projC x .

16

Motivation Background Prox Algorithms What if. . . More adventuring References

Proximity operators: a new hope

The proximity operator of f at x ∈ H is

proxf (x) = Argmin
u∈H

f (u) + 1
2‖x − u‖2 projC x

x

→ For f ∈ Γ0(H) and x ∈ H, proxf (x) is unique. Defines an operator proxf : H → H.
→ Projection onto closed convex set C : proxιC (x) = Argmin u∈C‖x − u‖2 = projC x .

16

Motivation Background Prox Algorithms What if. . . More adventuring References

Proximity operators: a new hope

The proximity operator of f at x ∈ H is

proxf (x) = Argmin
u∈H

f (u) + 1
2‖x − u‖2

→ For f ∈ Γ0(H) and x ∈ H, proxf (x) is unique. Defines an operator proxf : H → H.
→ Projection onto closed convex set C : proxιC (x) = Argmin u∈C‖x − u‖2 = projC x .
→ [Martinet, Fr. Inf. Rech. Oper., 1970] (translated / modernized):

Let f ∈ Γ0(H) be such that Argmin f 6= ∅.Let γ > 0, x0 ∈ H, and set

xn+1 = proxγf xn.

Then (xn)n∈N ⇀ x∗ ∈ Argmin f .

16

Motivation Background Prox Algorithms What if. . . More adventuring References

Proximity operators: a new hope

The proximity operator of f at x ∈ H is

proxf (x) = Argmin
u∈H

f (u) + 1
2‖x − u‖2

→ For f ∈ Γ0(H) and x ∈ H, proxf (x) is unique. Defines an operator proxf : H → H.
→ Projection onto closed convex set C : proxιC (x) = Argmin u∈C‖x − u‖2 = projC x .
→ [Martinet, Fr. Inf. Rech. Oper., 1970] (translated / modernized):

Let f ∈ Γ0(H) be such that Argmin f 6= ∅.Let γ > 0, x0 ∈ H, and set

xn+1 = proxγf xn.

Then (xn)n∈N ⇀ x∗ ∈ Argmin f . Issue: proxf might be hard to compute.

17

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms
f =

∑
16i6m

fi

(proxfi)16i6m are simpler than proxf .

17

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms
f =

∑
16i6m

fi

(proxfi)16i6m are simpler than proxf .

Open-source repo’s:
Python/Matlab:
proximity-operator.net,
Julia:
ProximalOperators.jl (Github)

https://proximity-operator.net/
https://juliafirstorder.github.io/ProximalOperators.jl/latest/

17

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms
f =

∑
16i6m

fi

(proxfi)16i6m are simpler than proxf .

Algorithmic “Splitting” mentality:

proxf

proxf1 , . . . proxfm

17

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms
f =

∑
16i6m

fi

(proxfi)16i6m are simpler than proxf .

Algorithmic “Splitting” mentality:

proxf

proxf1 , . . . proxfm

Pseudocode for many proximal splitting algorithms*

Require: Point x0 ∈ H, objective function f
1: for n = 0, 1 to . . . do
2: # Preprocess xn
3: for i = 1 to m do
4: yi ,n+1 ← evaluation of proxfi (·)
5: end for
6: xn+1 ← combine (yi ,n+1)16i6m
7: end for

*:e.g., Douglas-Rachford, ADMM, Chambolle-Pock,
Forward-backward, Augmented Lagrangian, . . .

17

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms
f =

∑
16i6m

fi

image: baeldung.com

Pseudocode for many proximal splitting algorithms*

Require: Point x0 ∈ H, objective function f
1: for n = 0, 1 to . . . do
2: # Preprocess xn
3: for i = 1 to m do
4: yi ,n+1 ← evaluation of proxfi (·)
5: end for
6: xn+1 ← combine (yi ,n+1)16i6m
7: end for

*:e.g., Douglas-Rachford, ADMM, Chambolle-Pock,
Forward-backward, Augmented Lagrangian, . . .

17

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms
f =

∑
16i6m

fi

image: baeldung.com

Pseudocode for many proximal splitting algorithms*

Require: Point x0 ∈ H, objective function f
1: for n = 0, 1 to . . . do
2: # Preprocess xn
3: for i = 1 to m do
4: yi ,n+1 ← evaluation of proxfi (·)
5: end for
6: xn+1 ← combine (yi ,n+1)16i6m
7: end for

*:e.g., Douglas-Rachford, ADMM, Chambolle-Pock,
Forward-backward, Augmented Lagrangian, . . .

17

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms
f =

∑
16i6m

fi

image: baeldung.com

Pseudocode for block-iterative proximal splitting algorithms

Require: Point x0 ∈ H, objective function f
1: for n = 0, 1 to . . . do
2: # Preprocess xn; Select In ⊂ {1, . . . ,m}
3: for i = 1 to m do
4: if i ∈ In then
5: yi ,n+1 ← evaluation of proxfi (·)
6: else
7: yi ,n+1 ← yi ,n
8: end if
9: end for

10: xn+1 ← combine (yi ,n+1)16i6m
11: end for

18

Motivation Background Prox Algorithms What if. . . More adventuring References

Block activation for image recovery (m = 2)

0 200 400 600 800 1000 1200 1400 1600
−30

−25

−20

−15

−10

−5

0

Time (seconds)

‖x
n
−

x ∞
‖/
‖x

0
−

x ∞
‖(

dB
)

Block activation
Full activation

[C. & ZW, SIAM J. Imaging Sci., 2022] Relative error
for full-activation (In = I) versus block activation: In =

{
{1, 2}, if n ≡ 0 mod 5;
{2}, if n 6≡ 0 mod 5.

19

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms

f =
∑

16i6m
fi

image: baeldung.com

Pseudocode for block-iterative proximal splitting algorithms*

Require: Point x0 ∈ H, objective function f
1: for n = 0, 1 to . . . do
2: # Preprocess xn; Select In ⊂ {1, . . . ,m}
3: for i = 1 to m do
4: if i ∈ In then
5: yi ,n+1 ← evaluation of proxfi (·)
6: else
7: yi ,n+1 ← yi ,n
8: end if
9: end for

10: xn+1 ← combine (yi ,n+1)16i6m
11: end for

19

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms

f =
∑

16i6m
fi

Two (currently separate) approaches:
→ Asynchronous updates
→ Extrapolated updates

Pseudocode for block-iterative proximal splitting algorithms*

Require: Point x0 ∈ H, objective function f
1: for n = 0, 1 to . . . do
2: # Preprocess xn; Select In ⊂ {1, . . . ,m}
3: for i = 1 to m do
4: if i ∈ In then
5: yi ,n+1 ← evaluation of proxfi (·)
6: else
7: yi ,n+1 ← yi ,n
8: end if
9: end for

10: xn+1 ← combine (yi ,n+1)16i6m
11: end for

19

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms
Parallel and Synchronous

19

Motivation Background Prox Algorithms What if. . . More adventuring References

Evolution of prox-based algorithms
Parallel and Synchronous

Parallel and Asynchronous

20

Motivation Background Prox Algorithms What if. . . More adventuring References

Asynchrony: Projective Splitting Algorithms

[Eckstein & Svaiter, Math Prog. A, 2008]:
Coined “Projective splitting” (synchronous, not block-iterative).
[Combettes & Eckstein, Math Prog. B, 2018]:
Convergence proof with asynchronous block-iterative updates!
[Combettes, Búi, & ZW, IEEE ICASSP, 2022]:
Numerical analysis (space and time complexity). For ML (training classifiers) and
image processing, works better than other algorithms in its class.
Only studied synchronous case!

Dua, Goel, Sharma, & ZW (ongoing work):
Analysis and experimentation for asynchronous case. AsyncProx.jl in development.

20

Motivation Background Prox Algorithms What if. . . More adventuring References

Asynchrony: Projective Splitting Algorithms

[Eckstein & Svaiter, Math Prog. A, 2008]:
Coined “Projective splitting” (synchronous, not block-iterative).
[Combettes & Eckstein, Math Prog. B, 2018]:
Convergence proof with asynchronous block-iterative updates!
[Combettes, Búi, & ZW, IEEE ICASSP, 2022]:
Numerical analysis (space and time complexity). For ML (training classifiers) and
image processing, works better than other algorithms in its class.
Only studied synchronous case!

Dua, Goel, Sharma, & ZW (ongoing work):
Analysis and experimentation for asynchronous case. AsyncProx.jl in development.

20

Motivation Background Prox Algorithms What if. . . More adventuring References

Asynchrony: Projective Splitting Algorithms

[Eckstein & Svaiter, Math Prog. A, 2008]:
Coined “Projective splitting” (synchronous, not block-iterative).
[Combettes & Eckstein, Math Prog. B, 2018]:
Convergence proof with asynchronous block-iterative updates!
[Combettes, Búi, & ZW, IEEE ICASSP, 2022]:
Numerical analysis (space and time complexity). For ML (training classifiers) and
image processing, works better than other algorithms in its class.
Only studied synchronous case!

Dua, Goel, Sharma, & ZW (ongoing work):
Analysis and experimentation for asynchronous case. AsyncProx.jl in development.

20

Motivation Background Prox Algorithms What if. . . More adventuring References

Asynchrony: Projective Splitting Algorithms

[Eckstein & Svaiter, Math Prog. A, 2008]:
Coined “Projective splitting” (synchronous, not block-iterative).
[Combettes & Eckstein, Math Prog. B, 2018]:
Convergence proof with asynchronous block-iterative updates!
[Combettes, Búi, & ZW, IEEE ICASSP, 2022]:
Numerical analysis (space and time complexity). For ML (training classifiers) and
image processing, works better than other algorithms in its class.
Only studied synchronous case!

Dua, Goel, Sharma, & ZW (ongoing work):
Analysis and experimentation for asynchronous case. AsyncProx.jl in development.

21

Motivation Background Prox Algorithms What if. . . More adventuring References

Over-relaxation (extrapolation)
Given a “descent direction” d (e.g., combination of (yi ,n+1)16i6m) from x ∈ H,

x+ = (1− α)x + α(x + d)

0 6 α < 1: under-relaxation

1 < α: over-relaxation

x

x+ d

f

f
0 ≤ α < 1

1 < α

xn+1 = xn − αn
1
L∇f (xn), where αn ∈ [ε, 2− ε] (GD)

= (1− αn)xn + αn

(
xn−

1
L∇f (xn)

)

21

Motivation Background Prox Algorithms What if. . . More adventuring References

Over-relaxation (extrapolation)
Given a “descent direction” d (e.g., combination of (yi ,n+1)16i6m) from x ∈ H,

x+ = (1− α)x + α(x + d)

0 6 α < 1: under-relaxation

1 < α: over-relaxation

x

x+ d

f

f
0 ≤ α < 1

1 < α

xn+1 = xn − αn
1
L∇f (xn), where αn ∈ [ε, 2− ε] (GD)

= (1− αn)xn + αn

(
xn−

1
L∇f (xn)

)

21

Motivation Background Prox Algorithms What if. . . More adventuring References

Over-relaxation (extrapolation)
Given a “descent direction” d (e.g., combination of (yi ,n+1)16i6m) from x ∈ H,

x+ = (1− α)x + α(x + d)

0 6 α < 1: under-relaxation

1 < α: over-relaxation

x

x+ d

f

f
0 ≤ α < 1

1 < α

xn+1 = xn − αn
1
L∇f (xn), where αn ∈ [ε, 2− ε] (GD)

= (1− αn)xn + αn

(
xn−

1
L∇f (xn)

)

22

Motivation Background Prox Algorithms What if. . . More adventuring References

Over-relaxation for fixed-point problems
[Combettes & ZW, J. Approx. Theory, 2021]:
A strongly-convergent algorithm with affine-convex extrapolation.
Example: EEG data (minimal-norm solution to an ill-posed nonlinear inverse problem;

recovery after 1000 iterations, < 1 minute.)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
−0.5

0

0.5

1

Signal index

Si
gn

al
va

lu
e

Solution
Recovery with affine extrapolation

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
−0.5

0

0.5

1

Signal index

Si
gn

al
va

lu
e

Solution
Recovery without affine extrapolation

23

Motivation Background Prox Algorithms What if. . . More adventuring References

Theoretically-sound optimization

1. Motivation

2. Background: Theory vs practice

3. Proximity operators: Algorithmic bells and whistles

4. Splitting FW: What if the “usual” tools fail us?

5. More adventuring

24

Motivation Background Prox Algorithms What if. . . More adventuring References

They stole my horse!

Splitting problem setup

Given a smooth function f : Rn → R and compact convex sets (Ci)16i6m

minimize f (x) subject to x ∈
⋂

16i6m
Ci , (?)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

What if (projCi)16i6m are too expensive? ← e.g., in high-dimensional settings!

24

Motivation Background Prox Algorithms What if. . . More adventuring References

They stole my horse!

Splitting problem setup

Given a smooth function f : Rn → R and compact convex sets (Ci)16i6m

minimize f (x) subject to x ∈
⋂

16i6m
Ci , (?)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

What if (projCi)16i6m are too expensive? ← e.g., in high-dimensional settings!

25

Motivation Background Prox Algorithms What if. . . More adventuring References

A spark of inspiration

Frank-Wolfe / “Conditional gradient” alg. [Naval Res. Logist. Quart., 1956]

Given a smooth function f : Rn → R and a nonempty compact
convex set C ,

minimize f (x) subject to x ∈ C

Instead of projecting, use a linear minimization oracle of C ,

LMOC : y 7→ p ∈ Argmin x∈C 〈y | x〉 (LMO)

xn+1 = xn + 1
n + 1

(
LMOC

(
∇f (xn)

)
− xn

)

Marguerite Frank

Philip Wolfe

26

Motivation Background Prox Algorithms What if. . . More adventuring References

efficiency(LMOs) == efficiency(lembus bread)
[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, C , projC is more expensive than LMOC .
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

Example: Nuclear norm ball

For x ∈ Rn×n

‖x‖nuc =
∑

16i6n
σi (x).

For β > 0, C = {x ∈ Rn×n | ‖x‖nuc 6 β},

projC (x): requires a full SVD!
(σ1, . . . , σn,U,V), where x = Udiag(σ1, . . . , σn)V>

LMOC (x): requires only first singular value/vectors
(σ1,U1,V>1)

Full SVD

n = 500: 0.11 sec

n = 1000: 0.47 sec

n = 2000: 4.87 sec

Just (σ1,U1,V>1)

n = 500: 0.0081 sec

n = 1000: 0.056 sec

n = 2000: 0.638 sec

26

Motivation Background Prox Algorithms What if. . . More adventuring References

efficiency(LMOs) == efficiency(lembus bread)
[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, C , projC is more expensive than LMOC .
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

Example: Nuclear norm ball

For x ∈ Rn×n

‖x‖nuc =
∑

16i6n
σi (x).

For β > 0, C = {x ∈ Rn×n | ‖x‖nuc 6 β},

projC (x): requires a full SVD!
(σ1, . . . , σn,U,V), where x = Udiag(σ1, . . . , σn)V>

LMOC (x): requires only first singular value/vectors
(σ1,U1,V>1)

Full SVD

n = 500: 0.11 sec

n = 1000: 0.47 sec

n = 2000: 4.87 sec

Just (σ1,U1,V>1)

n = 500: 0.0081 sec

n = 1000: 0.056 sec

n = 2000: 0.638 sec

26

Motivation Background Prox Algorithms What if. . . More adventuring References

efficiency(LMOs) == efficiency(lembus bread)
[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, C , projC is more expensive than LMOC .
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

Example: Nuclear norm ball

For x ∈ Rn×n

‖x‖nuc =
∑

16i6n
σi (x).

For β > 0, C = {x ∈ Rn×n | ‖x‖nuc 6 β},

projC (x): requires a full SVD!
(σ1, . . . , σn,U,V), where x = Udiag(σ1, . . . , σn)V>

LMOC (x): requires only first singular value/vectors
(σ1,U1,V>1)

Full SVD

n = 500: 0.11 sec

n = 1000: 0.47 sec

n = 2000: 4.87 sec

Just (σ1,U1,V>1)

n = 500: 0.0081 sec

n = 1000: 0.056 sec

n = 2000: 0.638 sec

26

Motivation Background Prox Algorithms What if. . . More adventuring References

efficiency(LMOs) == efficiency(lembus bread)
[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, C , projC is more expensive than LMOC .
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

Example: Nuclear norm ball

For x ∈ Rn×n

‖x‖nuc =
∑

16i6n
σi (x).

For β > 0, C = {x ∈ Rn×n | ‖x‖nuc 6 β},

projC (x): requires a full SVD!
(σ1, . . . , σn,U,V), where x = Udiag(σ1, . . . , σn)V>

LMOC (x): requires only first singular value/vectors
(σ1,U1,V>1)

Full SVD

n = 500: 0.11 sec

n = 1000: 0.47 sec

n = 2000: 4.87 sec

Just (σ1,U1,V>1)

n = 500: 0.0081 sec

n = 1000: 0.056 sec

n = 2000: 0.638 sec

27

Motivation Background Prox Algorithms What if. . . More adventuring References

Sure would be nice if we could use splitting. . .

minimize f (x) subject to x ∈
⋂

16i6m
Ci , (?)

Issue: Computing the LMO for ⋂16i6m Ci is prohibitively expensive.
(LMOCi)16i6m are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂
16i6m Ci

)
Relatively little has been done in this field.
→ Unlike projections, LMOs are discontinuous.
→ “State-of-the-art” relies on inexact prox-based algorithms.

27

Motivation Background Prox Algorithms What if. . . More adventuring References

Sure would be nice if we could use splitting. . .

minimize f (x) subject to x ∈
⋂

16i6m
Ci , (?)

Issue: Computing the LMO for ⋂16i6m Ci is prohibitively expensive.
(LMOCi)16i6m are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂
16i6m Ci

)
Relatively little has been done in this field.
→ Unlike projections, LMOs are discontinuous.
→ “State-of-the-art” relies on inexact prox-based algorithms.

27

Motivation Background Prox Algorithms What if. . . More adventuring References

Sure would be nice if we could use splitting. . .

minimize f (x) subject to x ∈
⋂

16i6m
Ci , (?)

Issue: Computing the LMO for ⋂16i6m Ci is prohibitively expensive.
(LMOCi)16i6m are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂
16i6m Ci

)
Relatively little has been done in this field.
→ Unlike projections, LMOs are discontinuous.
→ “State-of-the-art” relies on inexact prox-based algorithms.

27

Motivation Background Prox Algorithms What if. . . More adventuring References

Sure would be nice if we could use splitting. . .

minimize f (x) subject to x ∈
⋂

16i6m
Ci , (?)

Issue: Computing the LMO for ⋂16i6m Ci is prohibitively expensive.
(LMOCi)16i6m are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂
16i6m Ci

)
Relatively little has been done in this field.
→ Unlike projections, LMOs are discontinuous.
→ “State-of-the-art” relies on inexact prox-based algorithms.

27

Motivation Background Prox Algorithms What if. . . More adventuring References

Sure would be nice if we could use splitting. . .

minimize f (x) subject to x ∈
⋂

16i6m
Ci , (?)

Issue: Computing the LMO for ⋂16i6m Ci is prohibitively expensive.
(LMOCi)16i6m are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂
16i6m Ci

)
Relatively little has been done in this field.
→ Unlike projections, LMOs are discontinuous.
→ “State-of-the-art” relies on inexact prox-based algorithms.

27

Motivation Background Prox Algorithms What if. . . More adventuring References

Sure would be nice if we could use splitting. . .

minimize f (x) subject to x ∈
⋂

16i6m
Ci , (?)

Issue: Computing the LMO for ⋂16i6m Ci is prohibitively expensive.
(LMOCi)16i6m are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂
16i6m Ci

)
Relatively little has been done in this field.
→ Unlike projections, LMOs are discontinuous.
→ “State-of-the-art” relies on inexact prox-based algorithms.

27

Motivation Background Prox Algorithms What if. . . More adventuring References

Sure would be nice if we could use splitting. . .

minimize f (x) subject to x ∈
⋂

16i6m
Ci , (?)

Issue: Computing the LMO for ⋂16i6m Ci is prohibitively expensive.
(LMOCi)16i6m are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂
16i6m Ci

)
Relatively little has been done in this field.
→ Unlike projections, LMOs are discontinuous.
→ “State-of-the-art” relies on inexact prox-based algorithms.

28

Motivation Background Prox Algorithms What if. . . More adventuring References

It’s aliiive!
[ZW & P, 2024]: Split Conditional Gradient Algorithm

Require: Point x0 ∈ 1
m
∑

16i6m Ci , smooth function f
1: for t = 0, 1 to . . . do
2: Choose penalty parameter λt ∈]0,+∞[
3: Choose step size γt ∈]0, 1]
4: gt ← ∇f (xt)
5: for i = 1 to m do
6: v i

t ← LMOCi (gt + λt(x i
t − xt))

7: x i
t+1 ← x i

t + γt(v i
t − x i

t)
8: end for
9: xt+1 ← 1

m
∑

16i6m x i
t+1

10: end for

Practical advantages:
→ Uses individual LMOs
→ Lowest-known # LMO calls:

one LMO per set (per iteration)

Q: Does it actually solve (?)?
A: Yes.

γt = O(1/
√

t) and
λt = O(ln t) work.
(whether or not f is convex).

28

Motivation Background Prox Algorithms What if. . . More adventuring References

It’s aliiive!
[ZW & P, 2024]: Split Conditional Gradient Algorithm

Require: Point x0 ∈ 1
m
∑

16i6m Ci , smooth function f
1: for t = 0, 1 to . . . do
2: Choose penalty parameter λt ∈]0,+∞[
3: Choose step size γt ∈]0, 1]
4: gt ← ∇f (xt)
5: for i = 1 to m do
6: v i

t ← LMOCi (gt + λt(x i
t − xt))

7: x i
t+1 ← x i

t + γt(v i
t − x i

t)
8: end for
9: xt+1 ← 1

m
∑

16i6m x i
t+1

10: end for

Practical advantages:
→ Uses individual LMOs
→ Lowest-known # LMO calls:

one LMO per set (per iteration)

Q: Does it actually solve (?)?
A: Yes.

γt = O(1/
√

t) and
λt = O(ln t) work.
(whether or not f is convex).

29

Motivation Background Prox Algorithms What if. . . More adventuring References

Convergence

Theorem ([ZW & P., 2024])

Let f be L-smooth and let (Ci)16i6m be nonempty compact convex subsets of H such
that ⋂16i6m Ci 6= ∅. Let λ0 > 0 and λt+1 = λt + (

√
t + 2)−2 and γt = 2/(

√
t + 2).

If f is convex, then

f

 1
m

∑
16i6m

x i
t

→ inf
x∈
⋂

16i6m Ci
f (x)

and every accumulation point x∞ of (xt)t∈N produces a solution
1
m
∑

16i6m x i
∞ ∈

⋂
16i6m Ci such that f (1

m
∑

16i6m x∞) = infx∈
⋂

16i6m Ci
f (x).

Nonconvex convergence results too: arXiv:2311.05381

https://arxiv.org/abs/2311.05381

30

Motivation Background Prox Algorithms What if. . . More adventuring References

Theoretically-sound optimization

1. Motivation

2. Background: Theory vs practice

3. Proximity operators: Algorithmic bells and whistles

4. Splitting FW: What if the “usual” tools fail us?

5. More adventuring

31

Motivation Background Prox Algorithms What if. . . More adventuring References

Abs-smooth optimization

Abs-smooth functions f include compositions of
smooth functions, max, min, and | · |. . . .
→ Loss functions for multilayer Neural Networks

with smooth and/or ReLU activation.
→ Allows one to find a local minimizer on

non-convex objective functions!
→ Future work: Improve scalability.

32

Motivation Background Prox Algorithms What if. . . More adventuring References

Nonlinear inverse problems

x

p1

pm

pi

...

...

L1 F1

Lm Fm

Li Fi

Given (pi)16i6m, find x∗ ∈ H such that

(∀i ∈ {1, . . . ,m}) Fi (Lix∗) = pi

Li are bounded linear operators, and
Fi ≈ proximity operators.
→ To-do: Stability analysis

33

Motivation Background Prox Algorithms What if. . . More adventuring References

Outlook and future work

• Improved convergence rates and acceleration
• Block-iterative Frank-Wolfe algorithms
• Efficient prox/ LMO algorithms
• . . .

Potential collaborators: Hala Nelson, Minah Oh, Roger Thelwell, and more!

For students:
Proofs (MATH 245), sequences and series (236), gradients (237),
linear algebra (238/300/434), optimization theory (340), coding experience
(248/250/448/449), analysis (410/411).
REUs & Grad School in Berlin: iol.zib.de (Opt/ML), math-berlin.de

https://iol.zib.de/
https://www.math-berlin.de/

33

Motivation Background Prox Algorithms What if. . . More adventuring References

Outlook and future work

• Improved convergence rates and acceleration
• Block-iterative Frank-Wolfe algorithms
• Efficient prox/ LMO algorithms
• . . .

Potential collaborators: Hala Nelson, Minah Oh, Roger Thelwell, and more!

For students:
Proofs (MATH 245), sequences and series (236), gradients (237),
linear algebra (238/300/434), optimization theory (340), coding experience
(248/250/448/449), analysis (410/411).
REUs & Grad School in Berlin: iol.zib.de (Opt/ML), math-berlin.de

https://iol.zib.de/
https://www.math-berlin.de/

34

Motivation Background Prox Algorithms What if. . . More adventuring References

Thank you for your attention!

35

Motivation Background Prox Algorithms What if. . . More adventuring References

References

M. N. Búi, P. L. Combettes and ZW, Block-activated algorithms for multicomponent fully
nonsmooth minimization
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp 5428–5432, 2022.

P. L. Combettes, A. M. McDonald, C. A. Micchelli, and M. Pontil, Learning with optimal
interpolation norms
Numer. Algorithms, vol. 81, no. 2, pp. 695-–717, 2019.

P. L. Combettes and ZW, Signal recovery from inconsistent nonlinear observations
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp 5872—5876, 2022.

P. L. Combettes and ZW, A fixed point framework for recovering signals from nonlinear
transformations
Proc. IEEE Eur. Signal Proc., pp 2120-–2124, 2020.

P. L. Combettes and ZW, Reconstruction of functions from prescribed proximal points
J. Approx. Theory, vol. 268, no. 105606, 2021

36

Motivation Background Prox Algorithms What if. . . More adventuring References

References

P. L. Combettes and ZW, A variational inequality model for the construction of signals from
inconsistent nonlinear equations
SIAM J. Imaging Sci., vol. 15, no. 1, pp. 84–109, 2022

C. Combettes and S. Pokutta, Complexity of linear minimization and projection on some sets
Oper. Res. Lett., vol. 49, no. 4, pp. 565–571, 2021

M. Frank and P. Wolfe, An algorithm for quadratic programming
Naval Res. Logist. Quart., vol. 3, iss. 1–2, pp. 95–110, 1956

T. Kreimeier, S. Pokutta, A. Walther, and ZW, On a Frank-Wolfe approach for abs-smooth
functions
Opt. Methods and Softw., DOI: 10.1080/10556788.2023.2296985, 2024

B. Martinet, régularisation d’inéquations variationnelles par approximations successives
Fr. Inf. Rech. Oper., Série rouge, 4 (R3):154–158, 1970.

37

Motivation Background Prox Algorithms What if. . . More adventuring References

References

C. S. Sartori and L. S. Buriol, A study on the pickup and delivery problem with time windows:
Matheuristics and new instances
Comput. Oper. Res., vol. 124, art. 105065, 2020.

N. Torelli, D. Papp, and J. Unkelbach, Spatiotemporal fractionation schemes for stereotactic
radiosurgery of multiple brain metastases
Med. Phys., vol. 50, no. 8, pp. 5095-5114, 2023.

ZW and S. Pokutta, Splitting the conditional gradient algorithm
arXiv:2311.05381, 2024

38

Motivation Background Prox Algorithms What if. . . More adventuring References

Supplement

f =
∑

16i6m
fi

(proxfi)16i6m are simpler than proxf .

e.g., Find x ∈ Sn
+ ∩ [α, β]N×N

minimize
x∈Rn

ιSn
+

(x) + ι[α,β]N (x)

proxf is intractable.
proxf1 = proj[α,β]N

proxf2 = projSn
+

 known in closed-form.

	Motivation
	Background: Theory vs practice
	Proximity operators: Algorithmic bells and whistles
	Splitting FW: What if the ``usual'' tools fail us?
	More adventuring
	References

