A quest for theoretically-sound optimization

Zev Woodstock

Technische Universität Berlin & Zuse Institute Berlin

February 2024

"How did I get here?" - David Byrne

"How did I get here?" -David Byrne

Lise 6.05 - 8 petaflop/second (roughly 75 - 100 IBM Watsons)

Theoretically-sound optimization

 $oldsymbol{1}_{oldsymbol{\cdot}}$ Motivation

Motivation

- 2. Background: Theory vs practice
- $oldsymbol{3}_{oldsymbol{ \cdot }}$ Proximity operators: Algorithmic bells and whistles
- **4.** Splitting FW: What if the "usual" tools fail us?
- $oldsymbol{5}$. More adventuring

What is optimization?

Optimization in a nutshell ($\mathcal{H} = \mathbb{R}^n$ or any real Hilbert space)

- Objective function $f: \mathcal{H} \to \mathbb{R} \cup \{+\infty\}$. e.g., data fidelity in ML, energy efficiency, profit, statistical error, ...
- An "optimal" $x \in \mathcal{H}$ makes f(x) the smallest or largest e.g., minimize error, maximize efficiency

image: towardsdatascience.com

$$\underset{x \in \mathcal{H}}{\text{minimize}} f(x)$$

Constraint set(s) $\mathcal{C} \subset \mathcal{H}$

e.g., \mathbb{R}_+^N , \mathbb{S}_+^N , hypercube, solution set of an inverse problem, . . .

$$\iota_{\mathbf{C}}(x) = \begin{cases} 0 & \text{if } x \in \mathbf{C} \\ +\infty & \text{otherwise.} \end{cases}$$

$$\underset{x \in C}{\text{minimize}} \ \widetilde{f}(x) = \underset{x \in \mathcal{H}}{\text{minimize}} \ \widetilde{\underline{f}(x)} + \underset{f}{\iota_C(x)}$$

 Motivation
 Background
 Prox Algorithms
 What if...
 More adventuring
 References

 00●000
 000000
 000000
 00000
 0000
 0000

Modeling via optimization

[Torelli et al., Med. Phys., 2023]

image: [Fu et al., Tech. Cancer Res. Treatment, 2023]

[Sartori & Buriol, Comput. Oper. Res., 2020]

Modeling via optimization

image: towardsdatascience.com

Modeling via optimization

image: towardsdatascience.com

Recovery

Modeling via optimization

Original

Observation

Motivation 000000

Modeling via optimization

Observation

Original

Recovery

Observation Recovered stars

Some fundamental questions

- What are the roadblocks to *provably* solving optimization problems?
 - → Nonconvexity, nonsmoothness, and bears oh my!

Some fundamental questions

- What are the roadblocks to *provably* solving optimization problems?
 - → Nonconvexity, nonsmoothness, and bears oh my!
- What theoretically-sound algorithms exist?

Some fundamental questions

- What are the roadblocks to provably solving optimization problems?
 - → Nonconvexity, nonsmoothness, and bears oh my!
- What theoretically-sound algorithms exist, and can we do better?
 - → Splitting, Parallelization, Extrapolation, Asynchronous computation

Theoretically-sound optimization

- **1.** Motivation
- 2. Background: Theory vs practice
- **3.** Proximity operators: Algorithmic bells and whistles
- **4.** Splitting FW: What if the "usual" tools fail us?
- $oldsymbol{5}$. More adventuring

 \mathcal{H} is a real Hilbert space with inner product $\langle \cdot \mid \cdot \rangle$, e.g., \mathbb{R}^n with the dot product $\langle x \mid y \rangle = x^T y$.

 \mathcal{H} is a real Hilbert space with inner product $\langle \cdot \mid \cdot \rangle$, e.g., \mathbb{R}^n with the dot product $\langle x \mid y \rangle = x^T y$.

Argmin $f = \{x \in \mathcal{H} \mid f(x) = \inf f(\mathcal{H})\}\$ is the set of minimizers of f.

 \mathcal{H} is a real Hilbert space with inner product $\langle \cdot \mid \cdot \rangle$, e.g., \mathbb{R}^n with the dot product $\langle x \mid y \rangle = x^T y$.

Argmin $f = \{x \in \mathcal{H} \mid f(x) = \inf f(\mathcal{H})\}\$ is the set of minimizers of f.

f is **convex** if, for all $x, y \in \mathcal{H}$ and $\alpha \in (0,1)$, $f(\alpha x + (1-\alpha)y) \leqslant \alpha f(x) + (1-\alpha)f(y)$

 \mathcal{H} is a real Hilbert space with inner product $\langle \cdot | \cdot \rangle$, e.g., \mathbb{R}^n with the dot product $\langle x | y \rangle = x^T y$.

Argmin $f = \{x \in \mathcal{H} \mid f(x) = \inf f(\mathcal{H})\}\$ is the set of minimizers of f.

f is **convex** if, for all $x, y \in \mathcal{H}$ and $\alpha \in (0,1)$, $f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)$

 \mathcal{H} is a real Hilbert space with inner product $\langle \cdot | \cdot \rangle$, e.g., \mathbb{R}^n with the dot product $\langle x | y \rangle = x^T y$.

Argmin $f = \{x \in \mathcal{H} \mid f(x) = \inf f(\mathcal{H})\}\$ is the set of minimizers of f.

f is **convex** if, for all $x, y \in \mathcal{H}$ and $\alpha \in (0,1)$, $f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)$

 \mathcal{H} is a real Hilbert space with inner product $\langle \cdot | \cdot \rangle$, e.g., \mathbb{R}^n with the dot product $\langle x | y \rangle = x^T y$.

Argmin $f = \{x \in \mathcal{H} \mid f(x) = \inf f(\mathcal{H})\}\$ is the set of minimizers of f.

f is **convex** if, for all $x, y \in \mathcal{H}$ and $\alpha \in (0,1)$, $f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)$

 \mathcal{H} is a real Hilbert space with inner product $\langle \cdot | \cdot \rangle$, e.g., \mathbb{R}^n with the dot product $\langle x | y \rangle = x^T y$.

Argmin $f = \{x \in \mathcal{H} \mid f(x) = \inf f(\mathcal{H})\}\$ is the set of minimizers of f.

C is **convex** if, for all $x, y \in C$ and $\alpha \in (0, 1)$, $\alpha x + (1 - \alpha)y \in C$.

 \mathcal{H} is a real Hilbert space with inner product $\langle \cdot \mid \cdot \rangle$, e.g., \mathbb{R}^n with the dot product $\langle x \mid y \rangle = x^T y$.

Argmin $f = \{x \in \mathcal{H} \mid f(x) = \inf f(\mathcal{H})\}\$ is the set of minimizers of f.

f is **convex** if, for all $x, y \in \mathcal{H}$ and $\alpha \in (0,1)$, $f(\alpha x + (1-\alpha)y) \leqslant \alpha f(x) + (1-\alpha)f(y)$

Let $\Gamma_0(\mathcal{H}) = \{f : \mathcal{H} \to \mathbb{R} \cup \{+\infty\} | f \text{ is convex, lower-semicontinuous, and proper}\}$,

```
\mathcal{H} is a real Hilbert space with inner product \langle \cdot \mid \cdot \rangle, e.g., \mathbb{R}^n with the dot product \langle x \mid y \rangle = x^T y.
```

Argmin $f = \{x \in \mathcal{H} \mid f(x) = \inf f(\mathcal{H})\}\$ is the set of minimizers of f.

$$f$$
 is **convex** if, for all $x, y \in \mathcal{H}$ and $\alpha \in (0,1)$, $f(\alpha x + (1-\alpha)y) \leqslant \alpha f(x) + (1-\alpha)f(y)$

Let $\Gamma_0(\mathcal{H}) = \{f : \mathcal{H} \to \mathbb{R} \cup \{+\infty\} | f \text{ is convex, lower-semicontinuous, and proper}\}$, e.g., e^x , $-\ln(x)$, $\|\cdot\|^2$, ReLU, Hinge loss, $\|Ax + b\|$, $\|\cdot\|_1$, $\iota_{\mathcal{C}}$ (\mathcal{C} convex and closed),

```
\mathcal{H} is a real Hilbert space with inner product \langle \cdot | \cdot \rangle,
e.g., \mathbb{R}^n with the dot product \langle x \mid y \rangle = x^T y.
Argmin f = \{x \in \mathcal{H} \mid f(x) = \inf f(\mathcal{H})\}\ is the set of minimizers of f.
f is convex if, for all x, y \in \mathcal{H} and \alpha \in (0,1), f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)
Let \Gamma_0(\mathcal{H}) = \{f : \mathcal{H} \to \mathbb{R} \cup \{+\infty\} | f \text{ is convex, lower-semicontinuous, and proper}\},
e.g., e^x, -\ln(x), \|\cdot\|^2, ReLU, Hinge loss, \|Ax+b\|, \|\cdot\|_1, \iota_C (C convex and closed),
       \sup\{f_i|i\in I\}, affine composition, positive linear combinations, ...
```

```
\mathcal{H} is a real Hilbert space with inner product \langle \cdot | \cdot \rangle,
e.g., \mathbb{R}^n with the dot product \langle x \mid y \rangle = x^T y.
Argmin f = \{x \in \mathcal{H} \mid f(x) = \inf f(\mathcal{H})\}\ is the set of minimizers of f.
f is convex if, for all x, y \in \mathcal{H} and \alpha \in (0,1), f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)
Let \Gamma_0(\mathcal{H}) = \{f : \mathcal{H} \to \mathbb{R} \cup \{+\infty\} | f \text{ is convex, lower-semicontinuous, and proper}\},
e.g., e^x, -\ln(x), \|\cdot\|^2, ReLU, Hinge loss, \|Ax+b\|, \|\cdot\|_1, \iota_C (C convex and closed),
       \sup\{f_i|i\in I\}, affine composition, positive linear combinations, ...
       not ||\mathcal{N}(x) - d|| for multilayer neural networks
```

"Traditioooon" - Tevye, Fiddler on the Roof

f is L-smooth ($L \ge 0$) if it is differentiable and $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$.

"Traditiooon" - Tevye, Fiddler on the Roof

f is L-smooth $(L \ge 0)$ if it is differentiable and $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$.

Gradient Descent

Let $f: \mathcal{H} \to \mathbb{R}$ be *L*-smooth and suppose Argmin $f \neq \emptyset$. Let $x_0 \in \mathcal{H}$, $\varepsilon > 0$ and for every $n \in \mathbb{N}$, set

$$x_{n+1} = x_n - \lambda_n \nabla f(x_n), \quad \text{where } \lambda_n \in \left[\varepsilon, \frac{2}{L} - \varepsilon\right]$$
 (GD)

If $f \in \Gamma_0(\mathcal{H})$, then $(x_n)_{n \in \mathbb{N}}$ converges to a minimizer of f.

Foe #1: Non-convexity

f is L-smooth $(L \ge 0)$ if it is differentiable and $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$.

Gradient Descent

Let $f: \mathcal{H} \to \mathbb{R}$ be L-smooth and suppose Argmin $f \neq \emptyset$. Let $x_0 \in \mathcal{H}$, $\varepsilon > 0$ and for every $n \in \mathbb{N}$, set

$$x_{n+1} = x_n - \lambda_n \nabla f(x_n), \quad \text{where } \lambda_n \in \left[\varepsilon, \frac{2}{L} - \varepsilon\right]$$
 (GD)

If $f \notin \Gamma_0(\mathcal{H})$, then $(x_n)_{n \in \mathbb{N}}$ coverges to a **stationary point**.

$$(\nabla f(x^*) = 0)$$

For x_0 sufficiently close to a minimizer, $(x_n)_{n\in\mathbb{N}}$ converges to one.

"Traditiooon" - Tevye, Fiddler on the Roof

f is L-smooth $(L \geqslant 0)$ if it is differentiable and $\|\nabla f(x) - \nabla f(y)\| \leqslant L\|x - y\|$. $f = \sum_{1 \leqslant i \leqslant m} f_i$

Gradient Descent

Let $f: \mathcal{H} \to \mathbb{R}$ be *L*-smooth and suppose Argmin $f \neq \emptyset$. Let $x_0 \in \mathcal{H}$, $\varepsilon > 0$ and for every $n \in \mathbb{N}$, set

$$x_{n+1} = x_n - \lambda_n \nabla f(x_n), \quad \text{where } \lambda_n \in \left[\varepsilon, \frac{2}{L} - \varepsilon\right]$$
 (GD)

If $f \in \Gamma_0(\mathcal{H})$, then $(x_n)_{n \in \mathbb{N}}$ converges to a minimizer of f.

"Traditioooon" - Tevve, Fiddler on the Roof

f is L-smooth $(L \ge 0)$ if it is differentiable and $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$. $f = \sum_{i} f_{i}$ $1 \le i \le m$

Stochastic Gradient Descent (one variant)

Let $f: \mathcal{H} \to \mathbb{R}$ be L-smooth and suppose Argmin $f \neq \emptyset$. Let $x_0 \in \mathcal{H}$ and for every $n \in \mathbb{N}$, set

$$x_{n+1} = x_n - \frac{1}{n+1} \nabla f_{i_n}(x_n), \quad \text{where } i_n \sim U(\{1, \dots, m\}) \quad (SGD)$$

If $f \in \Gamma_0(\mathcal{H})$, then $\mathbb{E}[f(x_n)]$ converges to $\inf_{x \in \mathcal{H}} f(x)$.

Why can't we take the eagles to Mordor?

(A reasonable question to ask, if we didn't read the books)

A common paradigm:

- 1. Define an objective function
- 2. Optimize with an efficient algorithm, e.g., SGD with algorithmic differentiation (AD)

Why can't we take the eagles to Mordor?

(A reasonable question to ask, if we didn't read the books)

A common paradigm:

- 1. Define an objective function
- Optimize with an efficient algorithm, e.g., SGD with algorithmic differentiation (AD)

[Pontil et al., *Numer. Algorithms*, 2019] Training a sparse linear binary classifier

image: adeveloperdiary.com

Why can't we take the eagles to Mordor?

(A reasonable question to ask, if we didn't read the books)

A common paradigm:

- 1. Define an objective function
- Optimize with an efficient algorithm, e.g., SGD with algorithmic differentiation (AD)

[Pontil et al., *Numer. Algorithms*, 2019] Training a sparse linear binary classifier

image: adeveloperdiarv.com

$$\begin{split} \underset{x \in \mathbb{R}^n}{\mathsf{minimize}} & \sum_{i \in I_1} \mathsf{max}\{0, 1 - \langle x \mid \textit{a}_i \rangle\} + \\ & \sum_{i \in I_1} \mathsf{max}\{0, 1 + \langle x \mid \textit{a}_i \rangle\} + \lambda \|x\|_1 \end{split}$$

Foe #2: Non-differentiability

A common paradigm:

- 1. Define an objective function
- Optimize with an efficient algorithm, e.g., SGD with algorithmic differentiation (AD)

Issue: For many objective functions, a gradient does not exist.

[Pontil et al., *Numer. Algorithms*, 2019] Training a sparse linear binary classifier

image: adeveloperdiary.com

$$\begin{split} \underset{x \in \mathbb{R}^n}{\text{minimize}} & \sum_{i \in I_1} \max\{0, 1 - \langle x \mid a_i \rangle\} + \\ & \sum_{i \in I_1} \max\{0, 1 + \langle x \mid a_i \rangle\} + \lambda \|x\|_1 \end{split}$$

i∈b

Foe #2: Non-differentiability

A common paradigm:

- 1. Define an objective function
- 2. Optimize with an efficient algorithm, e.g., SGD with algorithmic differentiation (AD)

Issue: For many objective functions, a gradient does not exist.

image: riplevs.com

How do we solve $\nabla f = 0$ when ∇f doesn't exist?

If $f \in \Gamma_0(\mathcal{H})$ is differentiable at $x \in \mathcal{H}$, then

$$(\forall y \in \mathcal{H}) \qquad \langle y - x \mid \nabla f(x) \rangle + f(x) \leqslant f(y).$$

A subgradient $g \in \mathcal{H}$ of $f : \mathcal{H} \to]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H})$$
 $\langle y - x \mid g \rangle + f(x) \leqslant f(y).$

A subgradient $g \in \mathcal{H}$ of $f : \mathcal{H} \to]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H})$$
 $\langle y - x \mid g \rangle + f(x) \leqslant f(y).$

The **subdifferential** $\partial f(x) \subset \mathcal{H}$ is the set containing all subgradients of f at x.

A subgradient $g \in \mathcal{H}$ of $f : \mathcal{H} \to]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H})$$
 $\langle y - x \mid g \rangle + f(x) \leqslant f(y).$

The subdifferential $\partial f(x) \subset \mathcal{H}$ is the set containing all subgradients of f at x.

Example: $f = |\cdot|$: What do we do at zero?

A subgradient $g \in \mathcal{H}$ of $f : \mathcal{H} \to]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H})$$
 $\langle y - x \mid g \rangle + f(x) \leqslant f(y).$

The **subdifferential** $\partial f(x) \subset \mathcal{H}$ is the set containing all subgradients of f at x.

Example: $f = |\cdot|$: What do we do at zero? $\partial f(0) = [-1, 1]$

$$\partial f(0) = [-1, 1]$$

A subgradient $g \in \mathcal{H}$ of $f : \mathcal{H} \to]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H})$$
 $\langle y - x \mid g \rangle + f(x) \leqslant f(y).$

The **subdifferential** $\partial f(x) \subset \mathcal{H}$ is the set containing all subgradients of f at x.

Fermat's Rule

Let $x \in \mathcal{H}$. Then $x \in \text{Argmin } f$ if and only if $0 \in \partial f(x)$.

A subgradient $g \in \mathcal{H}$ of $f : \mathcal{H} \rightarrow]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H})$$
 $\langle y - x \mid g \rangle + f(x) \leqslant f(y).$

The **subdifferential** $\partial f(x) \subset \mathcal{H}$ is the set containing all subgradients of f at x.

Fermat's Rule

Let $x \in \mathcal{H}$. Then $x \in \text{Argmin } f$ if and only if $0 \in \partial f(x)$.

Proof:

$$0 \in \partial f(x) \Leftrightarrow (\forall y \in \mathcal{H}) \quad \langle y - x | 0 \rangle + f(x) \leqslant f(y)$$
$$\Leftrightarrow (\forall y \in \mathcal{H}) \quad f(x) \leqslant f(y)$$
$$\Leftrightarrow x \in \text{Argmin } f$$

A subgradient $g \in \mathcal{H}$ of $f : \mathcal{H} \to]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H})$$
 $\langle y - x \mid g \rangle + f(x) \leqslant f(y).$

The **subdifferential** $\partial f(x) \subset \mathcal{H}$ is the set containing all subgradients of f at x.

 ∂f is useful for developing both optimality criterion and algorithms.

Goal: " $0 \in \partial f(x)$ ". Which path do we take?

14

Goal: " $0 \in \partial f(x)$ ". Which path do we take?

Some provenly-convergent (first-order) algorithm classes:

- Subgradient-projections (e.g., in [C. & ZW, IEEE EUSIPCO, 2020])
- Proximity operators (e.g., in [C., B., & ZW, IEEE ICASSP, 2022], [C. & ZW, J. Approx. Theory, 2021], [C. & ZW, SIAM J. Imaging Sci., 2023])
- Conditional Gradient / "Frank-Wolfe" (e.g., in [ZW & P., 2024], [K., P., W., & ZW, Opt. Methods. Softw., 2024])
- Abs-smooth Optimization (e.g., [K., P., W., & ZW, Opt. Methods. Softw., 2024])
- Bundle methods, Barrier methods, Lagrangian methods, . . .

Goal: " $0 \in \partial f(x)$ ". Which path do we take?

Some provenly-convergent (first-order) algorithm classes:

- Subgradient-projections (e.g., in [C. & ZW, IEEE EUSIPCO, 2020])
- Proximity operators (e.g., in [C., B., & ZW, IEEE ICASSP, 2022], [C. & ZW, J. Approx. Theory, 2021], [C. & ZW, SIAM J. Imaging Sci., 2023])
- Conditional Gradient / "Frank-Wolfe" (e.g., in [ZW & P., 2024], [K., P., W., & ZW, Opt. Methods. Softw., 2024])
- Abs-smooth Optimization (e.g., [K., P., W., & ZW, Opt. Methods. Softw., 2024])
- Bundle methods, Barrier methods, Lagrangian methods, ...

Theoretically-sound optimization

- **1.** Motivation
- 2. Background: Theory vs practice
- $oldsymbol{3}$. Proximity operators: Algorithmic bells and whistles
- **4.** Splitting FW: What if the "usual" tools fail us?
- $\mathbf{5}$. More adventuring

The **proximity operator of** f at $x \in \mathcal{H}$ is

$$\operatorname{prox}_f(x) = \underset{u \in \mathcal{H}}{\operatorname{Argmin}} \ f(u) + \frac{1}{2} \|x - u\|^2$$

The **proximity operator of** f at $x \in \mathcal{H}$ is

$$\operatorname{prox}_f(x) = \underset{u \in \mathcal{H}}{\operatorname{Argmin}} \ f(u) + \frac{1}{2} \|x - u\|^2$$

 \rightarrow For $f \in \Gamma_0(\mathcal{H})$ and $x \in \mathcal{H}$, prox_f(x) is unique.

The **proximity operator of** f at $x \in \mathcal{H}$ is

$$\operatorname{prox}_f(x) = \underset{u \in \mathcal{H}}{\operatorname{Argmin}} \ f(u) + \frac{1}{2} \|x - u\|^2$$

 \to For $f \in \Gamma_0(\mathcal{H})$ and $x \in \mathcal{H}$, $\operatorname{prox}_f(x)$ is unique. Defines an operator $\operatorname{prox}_f \colon \mathcal{H} \to \mathcal{H}$.

The **proximity operator of** f at $x \in \mathcal{H}$ is

$$\operatorname{prox}_f(x) = \operatorname{Argmin}_{u \in \mathcal{H}} f(u) + \frac{1}{2} \|x - u\|^2$$

- \to For $f \in \Gamma_0(\mathcal{H})$ and $x \in \mathcal{H}$, $\operatorname{prox}_f(x)$ is unique. Defines an operator $\operatorname{prox}_f \colon \mathcal{H} \to \mathcal{H}$.
- \rightarrow Projection onto closed convex set C: $\operatorname{prox}_{\iota_C}(x) = \operatorname{Argmin}_{u \in C} ||x u||^2 = \operatorname{proj}_C x$.

The proximity operator of f at $x \in \mathcal{H}$ is

$$\operatorname{prox}_{f}(x) = \operatorname{Argmin}_{u \in \mathcal{H}} f(u) + \frac{1}{2} ||x - u||^{2}$$

- \to For $f \in \Gamma_0(\mathcal{H})$ and $x \in \mathcal{H}$, $\operatorname{prox}_f(x)$ is unique. Defines an operator $\operatorname{prox}_f \colon \mathcal{H} \to \mathcal{H}$.
- \rightarrow Projection onto closed convex set C: $\operatorname{prox}_{\iota_C}(x) = \operatorname{Argmin}_{u \in C} ||x u||^2 = \operatorname{proj}_C x$.
- ightarrow [Martinet, Fr. Inf. Rech. Oper., 1970] (translated / modernized): Let $f \in \Gamma_0(\mathcal{H})$ be such that Argmin $f \neq \varnothing$.Let $\gamma > 0$, $x_0 \in \mathcal{H}$, and set

$$x_{n+1} = \operatorname{prox}_{\gamma f} x_n.$$

Then $(x_n)_{n\in\mathbb{N}} \rightharpoonup x^* \in \operatorname{Argmin} f$.

The proximity operator of f at $x \in \mathcal{H}$ is

$$\operatorname{prox}_{f}(x) = \operatorname{Argmin}_{u \in \mathcal{H}} f(u) + \frac{1}{2} ||x - u||^{2}$$

- \to For $f \in \Gamma_0(\mathcal{H})$ and $x \in \mathcal{H}$, $\operatorname{prox}_f(x)$ is unique. Defines an operator $\operatorname{prox}_f \colon \mathcal{H} \to \mathcal{H}$.
- \rightarrow Projection onto closed convex set C: $\operatorname{prox}_{\iota_C}(x) = \operatorname{Argmin}_{u \in C} ||x u||^2 = \operatorname{proj}_C x$.
- ightarrow [Martinet, Fr. Inf. Rech. Oper., 1970] (translated / modernized): Let $f \in \Gamma_0(\mathcal{H})$ be such that Argmin $f \neq \varnothing$.Let $\gamma > 0$, $x_0 \in \mathcal{H}$, and set

$$x_{n+1} = \operatorname{prox}_{\gamma f} x_n.$$

Then $(x_n)_{n\in\mathbb{N}} \rightharpoonup x^* \in \operatorname{Argmin} f$. Issue: prox_f might be hard to compute.

$$f = \sum_{1 \leqslant i \leqslant m} f_i$$

 $(\operatorname{prox}_{f_i})_{1 \leq i \leq m}$ are simpler than prox_f .

$$f = \sum_{1 \leqslant i \leqslant m} f_i$$

 $(\operatorname{prox}_{f_i})_{1 \leq i \leq m}$ are simpler than prox_f .

Open-source repo's:

Python/Matlab:

proximity-operator.net,

Julia:

ProximalOperators.jl (Github)

$$f = \sum_{1 \le i \le m} f_i$$

 $(\operatorname{prox}_{f_i})_{1 \leq i \leq m}$ are simpler than prox_f .

Algorithmic "Splitting" mentality:

prox_€

 $\mathsf{prox}_{f_1}, \dots \mathsf{prox}_{f_m}$

$$f = \sum_{1 \le i \le m} f_i$$

 $(\operatorname{prox}_{f_i})_{1 \leq i \leq m}$ are simpler than prox_f .

Algorithmic "Splitting" mentality:

 $prox_f$

 $\mathsf{prox}_{f_1}, \dots \mathsf{prox}_{f_m}$

Pseudocode for many proximal splitting algorithms*

Require: Point $x_0 \in \mathcal{H}$, objective function f

- 1: **for** n = 0, 1 **to** ... **do**
- 2: $\# \text{ Preprocess } x_n$
- 3: **for** i = 1 **to** m **do**
- 4: $y_{i,n+1} \leftarrow \text{ evaluation of } \text{prox}_{f_i}(\cdot)$
- 5: end for
- 6: $x_{n+1} \leftarrow \text{combine } (y_{i,n+1})_{1 \le i \le m}$
- 7: end for

^{*:}e.g., Douglas-Rachford, ADMM, Chambolle-Pock, Forward-backward, Augmented Lagrangian, . . .

$$f = \sum_{1 \leqslant i \leqslant m} f_i$$

Pseudocode for many proximal splitting algorithms $\!\!\!\!\!^*$

Require: Point $x_0 \in \mathcal{H}$, objective function f

1: **for** n = 0, 1 **to** . . . **do**

2: # Preprocess x_n

3: **for** i = 1 **to** m **do**

4: $y_{i,n+1} \leftarrow \text{evaluation of } \text{prox}_{f_i}(\cdot)$

5: **end for**

6: $x_{n+1} \leftarrow \text{combine } (y_{i,n+1})_{1 \le i \le m}$

7: end for

image: baeldung.com

^{*:}e.g., Douglas-Rachford, ADMM, Chambolle-Pock, Forward-backward, Augmented Lagrangian, . . .

$$f = \sum_{1 \leqslant i \leqslant m} f_i$$

image: baeldung.com

Pseudocode for many proximal splitting algorithms*

Require: Point $x_0 \in \mathcal{H}$, objective function f

1: **for** n = 0, 1 **to** . . . **do**

2: # Preprocess x_n

3: **for** i = 1 **to** m **do**

4: $y_{i,n+1} \leftarrow \text{evaluation of } \text{prox}_{f_i}(\cdot)$

5: **end for**

6: $x_{n+1} \leftarrow \text{combine } (y_{i,n+1})_{1 \le i \le m}$

7: end for

^{*:}e.g., Douglas-Rachford, ADMM, Chambolle-Pock, Forward-backward, Augmented Lagrangian, . . .

$$f = \sum_{1 \le i \le m} f_i$$

image: baeldung.com

Pseudocode for block-iterative proximal splitting algorithms

```
Require: Point x_0 \in \mathcal{H}, objective function f
 1: for n = 0, 1 to ... do
        # Preprocess x_n; Select I_n \subset \{1, \ldots, m\}
        for i = 1 to m do
 3:
     if i \in I_n then
 4:
 5:
               y_{i,n+1} \leftarrow \text{evaluation of } \text{prox}_{f_i}(\cdot)
            else
 6:
               y_{i,n+1} \leftarrow y_{i,n}
            end if
 8.
        end for
 g.
        x_{n+1} \leftarrow \text{combine } (y_{i,n+1})_{1 \le i \le m}
10:
11: end for
```

Block activation for image recovery (m = 2)

[C. & ZW, SIAM J. Imaging Sci., 2022] Relative error for full-activation ($I_n = I$) versus block activation:

$$I_n = \begin{cases} \{1, 2\}, & \text{if } n \equiv 0 \mod 5; \\ \{2\}, & \text{if } n \not\equiv 0 \mod 5. \end{cases}$$

$$f = \sum_{1 \leqslant i \leqslant m} f_i$$

image: baeldung.com

Pseudocode for block-iterative proximal splitting algorithms*

```
Require: Point x_0 \in \mathcal{H}, objective function f
 1: for n = 0, 1 to . . . do
     # Preprocess x_n; Select I_n \subset \{1, \ldots, m\}
      for i = 1 to m do
           if i \in I_n then
               y_{i,n+1} \leftarrow \text{evaluation of prox}_{f_i}(\cdot)
           else
 6.
 7:
              y_{i,n+1} \leftarrow y_{i,n}
           end if
        end for
        x_{n+1} \leftarrow \text{combine } (y_{i,n+1})_{1 \le i \le m}
11: end for
```

$$f = \sum_{1 \leqslant i \leqslant m} f_i$$

Two (currently separate) approaches:

- \rightarrow Asynchronous updates
- \rightarrow Extrapolated updates

Pseudocode for block-iterative proximal splitting algorithms*

```
Require: Point x_0 \in \mathcal{H}, objective function f
 1: for n = 0, 1 to . . . do
        # Preprocess x_n; Select I_n \subset \{1, \ldots, m\}
        for i = 1 to m do
            if i \in I_n then
               y_{i,n+1} \leftarrow \text{evaluation of prox}_{f_i}(\cdot)
 5
 6.
            else
 7.
               y_{i,n+1} \leftarrow y_{i,n}
            end if
        end for
        x_{n+1} \leftarrow \text{combine } (y_{i,n+1})_{1 \le i \le m}
11: end for
```

Parallel and Synchronous

Parallel and Synchronous

Iteration 1

Iteration 2

Iteration 3

Parallel and Asynchronous


```
[Eckstein & Svaiter, Math Prog. A, 2008]:
```

Coined "Projective splitting" (synchronous, not block-iterative).

[Combettes & Eckstein, Math Prog. B, 2018]:

Convergence proof with asynchronous block-iterative updates!

```
[Eckstein & Svaiter, Math Prog. A, 2008]:
```

Coined "Projective splitting" (synchronous, not block-iterative).

[Combettes & Eckstein, Math Prog. B, 2018]:

Convergence proof with asynchronous block-iterative updates!

```
[Combettes, Búi, & ZW, IEEE ICASSP, 2022]:
```

Numerical analysis (space and time complexity). For ML (training classifiers) and image processing, works better than other algorithms in its class.

```
[Eckstein & Svaiter, Math Prog. A, 2008]:
```

Coined "Projective splitting" (synchronous, not block-iterative).

[Combettes & Eckstein, Math Prog. B, 2018]:

Convergence proof with asynchronous block-iterative updates!

```
[Combettes, Búi, & ZW, IEEE ICASSP, 2022]:
```

Numerical analysis (space and time complexity). For ML (training classifiers) and image processing, works better than other algorithms in its class.

Only studied synchronous case!

```
[Eckstein & Svaiter, Math Prog. A, 2008]:
```

Coined "Projective splitting" (synchronous, not block-iterative).

[Combettes & Eckstein, Math Prog. B, 2018]:

Convergence proof with asynchronous block-iterative updates!

```
[Combettes, Búi, & ZW, IEEE ICASSP, 2022]:
```

Numerical analysis (space and time complexity). For ML (training classifiers) and image processing, works better than other algorithms in its class.

Only studied synchronous case!

```
Dua, Goel, Sharma, & ZW (ongoing work):
```

Analysis and experimentation for **asynchronous** case. AsyncProx.jl in development.

Over-relaxation (extrapolation)

Given a "descent direction" d (e.g., combination of $(y_{i,n+1})_{1 \le i \le m}$) from $x \in \mathcal{H}$,

$$x_{+} = (1 - \alpha)x + \alpha(x + \mathbf{d})$$

Over-relaxation (extrapolation)

Given a "descent direction" d (e.g., combination of $(y_{i,n+1})_{1 \le i \le m}$) from $x \in \mathcal{H}$,

$$x_{+} = (1 - \alpha)x + \alpha(x + \mathbf{d})$$

 $0 \leqslant \alpha < 1$: under-relaxation

 $1 < \alpha$: over-relaxation

Over-relaxation (extrapolation)

Given a "descent direction" d (e.g., combination of $(y_{i,n+1})_{1 \le i \le m}$) from $x \in \mathcal{H}$,

$$x_+ = (1 - \alpha)x + \alpha(x + d)$$

 $0 \leqslant \alpha < 1$: under-relaxation

$$1 < \alpha$$
: over-relaxation

$$x_{n+1} = x_n - \alpha_n \frac{1}{L} \nabla f(x_n), \quad \text{where } \alpha_n \in [\varepsilon, 2 - \varepsilon]$$

$$= (1 - \alpha_n) x_n + \alpha_n \left(x_n - \frac{1}{L} \nabla f(x_n) \right)$$
(GD)

Over-relaxation for fixed-point problems

[Combettes & ZW, J. Approx. Theory, 2021]:

A strongly-convergent algorithm with affine-convex extrapolation.

Example: EEG data (minimal-norm solution to an ill-posed nonlinear inverse problem; recovery after 1000 iterations, < 1 minute.)

Theoretically-sound optimization

- **1.** Motivation
- 2. Background: Theory vs practice
- $oldsymbol{3}_{oldsymbol{ \cdot }}$ Proximity operators: Algorithmic bells and whistles
- 4. Splitting FW: What if the "usual" tools fail us?
- $oldsymbol{5}$. More adventuring

They stole my horse!

Splitting problem setup

Given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$ and compact convex sets $(C_i)_{1 \le i \le m}$

minimize
$$f(x)$$
 subject to $x \in \bigcap_{1 \leqslant i \leqslant m} C_i$, (\star)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

They stole my horse!

Splitting problem setup

Given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$ and compact convex sets $(C_i)_{1 \le i \le m}$

minimize
$$f(x)$$
 subject to $x \in \bigcap_{1 \le i \le m} C_i$, (\star)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

What if $(\text{proj}_{C_i})_{1 \leqslant i \leqslant m}$ are too expensive? \leftarrow e.g., in high-dimensional settings!

otivation Background Prox Algorithms What if... More adventuring References

A spark of inspiration

Frank-Wolfe / "Conditional gradient" alg. [Naval Res. Logist. Quart., 1956]

Given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$ and a nonempty compact convex set C,

minimize
$$f(x)$$
 subject to $x \in C$

Instead of projecting, use a linear minimization oracle of C,

$$\mathsf{LMO}_{\mathcal{C}} \colon y \mapsto p \in \mathsf{Argmin}_{x \in \mathcal{C}} \langle y \, | \, x \rangle \tag{LMO}$$

$$x_{n+1} = x_n + \frac{1}{n+1} \Big(\mathsf{LMO}_{C} \big(\nabla f(x_n) \big) - x_n \Big)$$

Marguerite Frank

Philip Wolfe

```
[Combettes/Pokutta, '21]: For many constraints, C, \operatorname{proj}_{\mathcal{C}} is more expensive than \operatorname{LMO}_{\mathcal{C}}. (e.g., nuclear norm ball, \ell_1 ball, probability simplex, Birkhoff polytope, general LP, . . . )
```

[Combettes/Pokutta, '21]: For many constraints, C, proj $_C$ is **more expensive** than LMO $_C$. (e.g., nuclear norm ball, ℓ_1 ball, probability simplex, Birkhoff polytope, general LP, ...)

Example: Nuclear norm ball

For $x \in \mathbb{R}^{n \times n}$

$$||x||_{nuc} = \sum_{1 \le i \le n} \sigma_i(x).$$

For
$$\beta \geqslant 0$$
, $C = \{x \in \mathbb{R}^{n \times n} \mid ||x||_{nuc} \leqslant \beta\}$,

[Combettes/Pokutta, '21]: For many constraints, C, proj $_C$ is **more expensive** than LMO $_C$. (e.g., nuclear norm ball, ℓ_1 ball, probability simplex, Birkhoff polytope, general LP, ...)

Example: Nuclear norm ball

For $x \in \mathbb{R}^{n \times n}$

$$||x||_{nuc} = \sum_{1 \leqslant i \leqslant n} \sigma_i(x).$$

For
$$\beta \geqslant 0$$
, $C = \{x \in \mathbb{R}^{n \times n} \mid ||x||_{nuc} \leqslant \beta\}$,

proj_C(x): requires a full SVD! $(\sigma_1, \ldots, \sigma_n, U, V)$, where $x = U \operatorname{diag}(\sigma_1, \ldots, \sigma_n) V^{\top}$

Full SVD

n = 500: 0.11 sec

n = 1000: 0.47 sec

n = 2000: 4.87 sec

[Combettes/Pokutta, '21]: For many constraints, C, proj $_C$ is **more expensive** than LMO $_C$. (e.g., nuclear norm ball, ℓ_1 ball, probability simplex, Birkhoff polytope, general LP, ...)

Example: Nuclear norm ball

For $x \in \mathbb{R}^{n \times n}$

$$||x||_{nuc} = \sum_{1 \leqslant i \leqslant n} \sigma_i(x).$$

For
$$\beta \geqslant 0$$
, $C = \{x \in \mathbb{R}^{n \times n} \mid ||x||_{nuc} \leqslant \beta\}$,

proj_C(x): requires a full SVD!

$$(\sigma_1, \dots, \sigma_n, U, V)$$
, where $x = U \operatorname{diag}(\sigma_1, \dots, \sigma_n) V^{\top}$

LMO_C(x): requires only first singular value/vectors $(\sigma_1, U_1, V_1^{\top})$

Full SVD

$$n = 500$$
: 0.11 sec

$$n = 1000$$
: 0.47 sec

$$n = 2000$$
: 4.87 sec

Just
$$(\sigma_1, U_1, V_1^{\top})$$

$$n = 500$$
: 0.0081 sec

$$n = 1000$$
: 0.056 sec

$$n = 2000$$
: 0.638 sec

minimize
$$f(x)$$
 subject to $x \in \bigcap_{1 \le i \le m} C_i$, (\star)

minimize
$$f(x)$$
 subject to $x \in \bigcap_{1 \le i \le m} C_i$, (\star)

Issue: Computing the LMO for $\bigcap_{1 \le i \le m} C_i$ is prohibitively expensive.

minimize
$$f(x)$$
 subject to $x \in \bigcap_{1 \le i \le m} C_i$, (\star)

Issue: Computing the LMO for $\bigcap_{1 \le i \le m} C_i$ is prohibitively expensive.

 $(\mathsf{LMO}_{C_i})_{1\leqslant i\leqslant m}$ are easier to evaluate (e.g., repository: FrankWolfe.jl)

minimize
$$f(x)$$
 subject to $x \in \bigcap_{1 \le i \le m} C_i$, (\star)

Issue: Computing the LMO for $\bigcap_{1 \le i \le m} C_i$ is prohibitively expensive.

 $(\mathsf{LMO}_{C_i})_{1\leqslant i\leqslant m}$ are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMO
$$_{C_1}$$
, LMO $_{C_2}$, ... instead of LMO $_{\left(\bigcap_{1\leqslant i\leqslant m}C_i\right)}$

minimize
$$f(x)$$
 subject to $x \in \bigcap_{1 \le i \le m} C_i$, (\star)

Issue: Computing the LMO for $\bigcap_{1 \le i \le m} C_i$ is prohibitively expensive.

 $(\mathsf{LMO}_{C_i})_{1\leqslant i\leqslant m}$ are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMO
$$_{C_1}$$
, LMO $_{C_2}$, ... instead of LMO $_{\left(\bigcap_{1\leqslant i\leqslant m}C_i\right)}$

Relatively little has been done in this field.

minimize
$$f(x)$$
 subject to $x \in \bigcap_{1 \le i \le m} C_i$, (\star)

Issue: Computing the LMO for $\bigcap_{1 \le i \le m} C_i$ is prohibitively expensive.

 $(\mathsf{LMO}_{C_i})_{1\leqslant i\leqslant m}$ are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMO
$$_{C_1}$$
, LMO $_{C_2}$, ... instead of LMO $_{\left(\bigcap_{1\leqslant i\leqslant m}C_i\right)}$

Relatively little has been done in this field.

→ Unlike projections, LMOs are discontinuous.

minimize
$$f(x)$$
 subject to $x \in \bigcap_{1 \leqslant i \leqslant m} C_i$, (\star)

Issue: Computing the LMO for $\bigcap_{1 \le i \le m} C_i$ is prohibitively expensive.

 $(\mathsf{LMO}_{C_i})_{1\leqslant i\leqslant m}$ are easier to evaluate (e.g., repository: FrankWolfe.jl)

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use LMO_{$$C_1$$}, LMO _{C_2} , ... instead of LMO _{$(\bigcap_{1 \leqslant i \leqslant m} C_i)$}

Relatively little has been done in this field.

- → Unlike projections, LMOs are discontinuous.
- \rightarrow "State-of-the-art" relies on inexact prox-based algorithms.

It's aliiive!

[ZW & P, 2024]: Split Conditional Gradient Algorithm

Require: Point $x_0 \in \frac{1}{m} \sum_{1 \leqslant i \leqslant m} C_i$, smooth function f

- 1: **for** t = 0, 1 **to** ... **do**
- 2: Choose penalty parameter $\lambda_t \in]0,+\infty[$
- 3: Choose step size $\gamma_t \in]0,1]$
- 4: $g_t \leftarrow \nabla f(x_t)$
- 5: **for** i = 1 **to** m **do**
- 6: $\mathbf{v}_t^i \leftarrow \mathsf{LMO}_{C_i}(g_t + \lambda_t(\mathbf{x}_t^i \mathbf{x}_t))$
- 7: $\mathbf{x}_{t+1}^i \leftarrow \mathbf{x}_t^i + \gamma_t (\mathbf{v}_t^i \mathbf{x}_t^i)$
- 8: end for
- 9: $x_{t+1} \leftarrow \frac{1}{m} \sum_{1 \leqslant i \leqslant m} \mathbf{x}_{t+1}^{i}$

10: end for

Practical advantages:

- → Uses individual LMOs
- ightarrow Lowest-known # LMO calls: one LMO per set (per iteration)

It's aliiive!

[ZW & P, 2024]: Split Conditional Gradient Algorithm

Require: Point $x_0 \in \frac{1}{m} \sum_{1 \leqslant i \leqslant m} C_i$, smooth function f

- 1: **for** t = 0, 1 **to** . . . **do**
- 2: Choose penalty parameter $\lambda_t \in]0,+\infty[$
- 3: Choose step size $\gamma_t \in]0,1]$
- 4: $g_t \leftarrow \nabla f(x_t)$
- 5: **for** i = 1 **to** m **do**
- 6: $\mathbf{v}_t^i \leftarrow \mathsf{LMO}_{C_i}(g_t + \lambda_t(\mathbf{x}_t^i x_t))$
- 7: $\mathbf{x}_{t+1}^i \leftarrow \mathbf{x}_t^i + \gamma_t(\mathbf{v}_t^i \mathbf{x}_t^i)$
- 8: end for
- 9: $x_{t+1} \leftarrow \frac{1}{m} \sum_{1 \leqslant i \leqslant m} \mathbf{x}_{t+1}^i$

10: end for

Practical advantages:

- \rightarrow Uses individual LMOs
- ightarrow Lowest-known # LMO calls: one LMO per set (per iteration)

Q: Does it actually solve (*)?

A: Yes.

$$\gamma_t = \mathcal{O}(1/\sqrt{t})$$
 and $\lambda_t = \mathcal{O}(\ln t)$ work. (whether or not f is convex).

Convergence

Theorem ([ZW & P., 2024])

Let f be L-smooth and let $(C_i)_{1 \leqslant i \leqslant m}$ be nonempty compact convex subsets of \mathcal{H} such that $\bigcap_{1 \leqslant i \leqslant m} C_i \neq \emptyset$. Let $\lambda_0 > 0$ and $\lambda_{t+1} = \lambda_t + (\sqrt{t} + 2)^{-2}$ and $\gamma_t = 2/(\sqrt{t} + 2)$. If f is **convex**, then

$$f\left(\frac{1}{m}\sum_{1\leqslant i\leqslant m}\boldsymbol{x}_t^i\right)\to \inf_{x\in\bigcap_{1\leqslant i\leqslant m}C_i}f(x)$$

and every accumulation point \pmb{x}_{∞} of $(\pmb{x}_t)_{t\in\mathbb{N}}$ produces a solution

$$\frac{1}{m}\sum_{1\leqslant i\leqslant m}\boldsymbol{x}_{\infty}^{i}\in\bigcap_{1\leqslant i\leqslant m}C_{i}\text{ such that }f(\frac{1}{m}\sum_{1\leqslant i\leqslant m}\boldsymbol{x}_{\infty})=\inf_{x\in\bigcap_{1\leqslant i\leqslant m}C_{i}}f(x).$$

Nonconvex convergence results too: arXiv:2311.05381

Theoretically-sound optimization

- **1.** Motivation
- 2. Background: Theory vs practice
- $oldsymbol{3}_{oldsymbol{ \cdot }}$ Proximity operators: Algorithmic bells and whistles
- **4.** Splitting FW: What if the "usual" tools fail us?
- **5.** More adventuring

Abs-smooth optimization

Abs-smooth functions f include compositions of smooth functions, max, min, and $|\cdot|$

- ightarrow Loss functions for multilayer Neural Networks with smooth and/or ReLU activation.
- → Allows one to find a local minimizer on non-convex objective functions!
- → Future work: Improve scalability.

Nonlinear inverse problems

Given $(p_i)_{1 \leq i \leq m}$, find $\mathbf{x}^* \in \mathcal{H}$ such that

$$(\forall i \in \{1,\ldots,m\})$$
 $F_i(L_i \mathbf{x}^*) = \mathbf{p}_i$

 L_i are bounded linear operators, and $F_i \approx$ proximity operators.

ightarrow To-do: Stability analysis

Outlook and future work

- Improved convergence rates and acceleration
- Block-iterative Frank-Wolfe algorithms
- Efficient prox/LMO algorithms
- . . .

Outlook and future work

- Improved convergence rates and acceleration
- Block-iterative Frank-Wolfe algorithms
- Efficient prox/LMO algorithms
-

Potential collaborators: Hala Nelson, Minah Oh, Roger Thelwell, and more!

For students:

Proofs (MATH 245), sequences and series (236), gradients (237), linear algebra (238/300/434), optimization theory (340), coding experience (248/250/448/449), analysis (410/411).

REUs & Grad School in Berlin: iol.zib.de (Opt/ML), math-berlin.de

Thank you for your attention!

References

Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp 5428–5432, 2022.

- P. L. Combettes and ZW, Signal recovery from inconsistent nonlinear observations Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp 5872—5876, 2022.
- P. L. Combettes and ZW, A fixed point framework for recovering signals from nonlinear transformations Proc. IEEE Eur. Signal Proc., pp 2120--2124, 2020.
 - P. L. Combettes and ZW, Reconstruction of functions from prescribed proximal points *J. Approx. Theory*, vol. 268, no. 105606, 2021

References

- C. Combettes and S. Pokutta, Complexity of linear minimization and projection on some sets *Oper. Res. Lett.*, vol. 49, no. 4, pp. 565–571, 2021
- M. Frank and P. Wolfe, An algorithm for quadratic programming Naval Res. Logist. Quart., vol. 3, iss. 1–2, pp. 95–110, 1956
- T. Kreimeier, S. Pokutta, A. Walther, and ZW, On a Frank-Wolfe approach for abs-smooth functions

 Opt. Methods and Softw., DOI: 10.1080/10556788.2023.2296985, 2024
 - B. Martinet, régularisation d'inéquations variationnelles par approximations successives *Fr. Inf. Rech. Oper.*, Série rouge, 4 (R3):154–158, 1970.

References

- N. Torelli, D. Papp, and J. Unkelbach, Spatiotemporal fractionation schemes for stereotactic radiosurgery of multiple brain metastases

 Med. Phys., vol. 50, no. 8, pp. 5095-5114, 2023.
- ZW and S. Pokutta, Splitting the conditional gradient algorithm arXiv:2311.05381, 2024

Supplement

$$f = \sum_{1 \leqslant i \leqslant m} f_i$$

 $(\operatorname{prox}_{f_i})_{1 \leq i \leq m}$ are simpler than prox_f .

e.g., Find
$$x \in \mathbb{S}_+^n \cap [\alpha, \beta]^{N \times N}$$

minimize $\iota_{\mathbb{S}_+^n}(x) + \iota_{[\alpha, \beta]^N}(x)$

prox_f is intractable.

prox_{f_1} = proj_{[\alpha, \beta]^N}

prox_{f_2} = proj_{\mathbb{S}_+^n}

known in closed-form.