

Splitting the Conditional Gradient Algorithm

INFORMS Annual Meeting

Zev Woodstock

October 2023

Sebastian Pokutta ZIB & Technische Universität Berlin

Interactive Optimization & Learning (IOL) Lab iol.zib.de

Splitting the Conditional Gradient Algorithm

${f 1}$. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms

2. Algorithm design

3. Convergence guarantees

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms ${\mbox{Algorithms for one constraint}}$

Classical problem setup

Given a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ and a nonempty compact convex set C,

minimize f(x) subject to $x \in C$.

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms ${\mbox{Algorithms for one constraint}}$

Classical problem setup

Given a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ and a nonempty compact convex set C,

minimize f(x) subject to $x \in C$.

Two iterative first-order algorithms for solving (1)

Projected gradient descent:

Conditional gradient:

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms ${\mbox{Algorithms for one constraint}}$

Classical problem setup

Given a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ and a nonempty compact convex set C,

minimize f(x) subject to $x \in C$.

Two iterative first-order algorithms for solving (1) differ in how $x \in C$ is enforced.

Projected gradient descent:

Conditional gradient:

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms **Algorithms for one constraint**

Classical problem setup

Given a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ and a nonempty compact convex set C,

minimize f(x) subject to $x \in C$.

Two iterative first-order algorithms for solving (1) differ in how $x \in C$ is enforced.

Projected gradient descent: Requires the *projection onto C*, proj_{*C*}:

$$y \mapsto \underset{x \in C}{\operatorname{arg\,min}} \|x - y\|^2$$
 (PROJ)

Conditional gradient:

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms **Algorithms for one constraint**

Classical problem setup

Given a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ and a nonempty compact convex set C,

minimize f(x) subject to $x \in C$.

(1)

Two iterative first-order algorithms for solving (1) differ in how $x \in C$ is enforced.

Projected gradient descent: Requires the *projection onto C*, proj_C:

$$y \mapsto \underset{x \in C}{\operatorname{arg\,min}} \|x - y\|^2$$
 (PROJ)

Conditional gradient: Requires the *linear minimization oracle* of *C*, LMO_{*C*}:

$$y \mapsto p \in \arg\min_{x \in C} \langle y \, | \, x \rangle$$
 (LMO)

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms **Algorithms for one constraint**

Classical problem setup

Given a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ and a nonempty compact convex set C,

minimize f(x) subject to $x \in C$.

Two iterative first-order algorithms for solving (1) differ in how $x \in C$ is enforced.

Projected gradient descent:RequiresConditional gradient:Requires thethe projection onto C, $proj_C$:linear minimization oracle of C, LMO_C :

$$y \mapsto \underset{x \in C}{\operatorname{arg\,min}} \|x - y\|^2$$
 (PROJ) $y \mapsto p \in \underset{x \in C}{\operatorname{arg\,min}} \langle y | x \rangle$

[Combettes/Pokutta, '21]: For many constraints, (PROJ) is more expensive than (LMO). (e.g., nuclear norm ball, ℓ_1 ball, probability simplex, Birkhoff polytope, general LP, ...) (1)

(LMO)

Splitting problem setup

Given a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ and compact convex sets $(C_i)_{i \in I}$ $(I = \{1, ..., m\})$,

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (*)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

Splitting problem setup

Given a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ and compact convex sets $(C_i)_{i \in I}$ $(I = \{1, ..., m\})$,

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (*)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

Issue: Computing the projection or LMO for $\bigcap_{i \in I} C_i$ is prohibitively expensive.

Splitting problem setup

Given a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ and compact convex sets $(C_i)_{i \in I}$ $(I = \{1, \ldots, m\})$,

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (*)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

Issue: Computing the projection or LMO for $\bigcap_{i \in I} C_i$ is prohibitively expensive. Projection-based **splitting algorithms** (e.g., Forward-Backward, Douglas-Rachford, projective splitting, etc.), enforce constraints via projections onto the individual sets

Use
$$\operatorname{proj}_{C_1}$$
, $\operatorname{proj}_{C_2}$, ... instead of $\operatorname{proj}_{(\bigcap_{i \in I} C_i)}$

Splitting problem setup

Given a smooth function $f : \mathbb{R}^n \to \mathbb{R}$ and compact convex sets $(C_i)_{i \in I}$ $(I = \{1, \ldots, m\})$,

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (*)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

Issue: Computing the projection or LMO for $\bigcap_{i \in I} C_i$ is prohibitively expensive. Projection-based **splitting algorithms** (e.g., Forward-Backward, Douglas-Rachford, projective splitting, etc.), enforce constraints via projections onto the individual sets

Use
$$\operatorname{proj}_{C_1}$$
, $\operatorname{proj}_{C_2}$, ... instead of $\operatorname{proj}_{(\bigcap_{i \in I} C_i)}$

Simpler tools \rightarrow previously intractable problems become solvable on a larger scale.

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms What if projections are too expensive?

LMO-based *splitting algorithms*, enforce constraints via LMOs for the individual sets

Use LMO_{$$C_1$$}, LMO _{C_2} , ... instead of LMO _{$(\bigcap_{i \in I} C_i)$}

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms What if projections are too expensive?

LMO-based *splitting algorithms*, enforce constraints via LMOs for the individual sets

Use LMO_{C_1} , LMO_{C_2} , ... instead of $LMO_{(\bigcap_{i \in I} C_i)}$

Relatively little has been done in this field.

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms What if projections are too expensive?

LMO-based *splitting algorithms*, enforce constraints via LMOs for the individual sets

Use LMO_{C_1} , LMO_{C_2} , ... instead of $LMO_{(\bigcap_{i \in I} C_i)}$

Relatively little has been done in this field.

- \rightarrow Unlike projections, LMOs are discontinuous.
- \rightarrow "CTRL+F / Replace proj with LMO" fails.

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms What if projections are too expensive?

LMO-based *splitting algorithms*, enforce constraints via LMOs for the individual sets

Use LMO_{C_1} , LMO_{C_2} , ... instead of $LMO_{\bigcap_{i \in I} C_i}$

Relatively little has been done in this field.

- \rightarrow Unlike projections, LMOs are discontinuous.
- \rightarrow "CTRL+F / Replace proj with LMO" fails.
- \rightarrow "State-of-the-art" relies on inexact prox-based algorithms (mostly Augmented Lagrangians).

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms $\ensuremath{\textbf{Previous work}}$

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms $\ensuremath{\textbf{Previous work}}$

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]

Currently, lowest iteration complexity is $\mathcal{O}(m)$: one LMO per set.

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms $\ensuremath{\textbf{Previous work}}$

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]

Currently, lowest iteration complexity is $\mathcal{O}(m)$: one LMO per set.

	<i>m</i> = 2	<i>m</i> > 2	f convex	f nonconvex	Analysis
[Pedregosa et al., '20]	×	×	 ✓ 	 ✓ 	CG
[Braun et al., '22]	~	×	$\mathbf{X}(f=0)$	×	CG

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms **Previous work**

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]

Currently, lowest iteration complexity is $\mathcal{O}(m)$: one LMO per set.

	<i>m</i> = 2	<i>m</i> > 2	f convex	f nonconvex	Analysis
[Pedregosa et al., '20]	×	×	 ✓ 	 ✓ 	CG
[Braun et al., '22]	 ✓ 	×	$\mathbf{X}(f=0)$	×	CG
[Gidel et al. '18]	 ✓ 	×	 ✓ 	×	AL+CG

ZUSE

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms **Previous work**

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]

Currently, lowest iteration complexity is $\mathcal{O}(m)$: one LMO per set.

	<i>m</i> = 2	<i>m</i> > 2	f convex	f nonconvex	Analysis
[Pedregosa et al., '20]	×	×	 ✓ 	 	CG
[Braun et al., '22]	 ✓ 	×	$\mathbf{X}(f=0)$	×	CG
[Gidel et al. '18]	 ✓ 	×	 	×	AL+CG
[Yurtsever et al. '19], [Silvetti-Falls et al. '20]	~	~	~	×	AL+CG
[Lan et al., '21]	(🖌)	(🖌)	 ✓ 	×	CG

7

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms **Previous work**

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]

Currently, lowest iteration complexity is $\mathcal{O}(m)$: one LMO per set.

	<i>m</i> = 2	<i>m</i> > 2	f convex	f nonconvex	Analysis
[Pedregosa et al., '20]	×	×	 ✓ 	✓	CG
[Braun et al., '22]	 ✓ 	×	$\mathbf{X}(f=0)$	×	CG
[Gidel et al. '18]	 ✓ 	×	 ✓ 	×	AL+CG
[Yurtsever et al. '19], [Silvetti-Falls et al. '20]	~	~	~	×	AL+CG
[Lan et al., '21]	(🖌)	(🖌)	 ✓ 	×	CG
[ZW/Pokutta '23]	 ✓ 	 ✓ 	 ✓ 	 ✓ 	CG

7

(\checkmark)- requires additional structure on $(C_i)_{i \in I}$

ZUSE INSTITUT BERLIN

Splitting the Conditional Gradient Algorithm

${f 1}$. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms

2. Algorithm design

3. Convergence guarantees

Tools from the projection literature

Product space construction

- $\{\omega_i\}_{i\in I}\subset]0,1]$, $\sum_{i\in I}\omega_i=1$ (e.g., $\omega_i\equiv 1/m$)
- $\mathcal{H} = \mathbb{R}^n$ and $\mathcal{H} = \bigotimes_{i \in I} \mathcal{H}$, with inner product $\sum_{i \in I} \omega_i \langle \cdot | \cdot \rangle$
- Diagonal subspace of \mathcal{H} : $D = \{(x, \ldots, x) | x \in \mathcal{H}\}$

Projecting onto **D** amounts to computing an average

$$\operatorname{proj}_{D} x = A^* A = A^* \sum_{i \in I} \omega_i x^i.$$

Tools from the projection literature

Product space construction

- $\{\omega_i\}_{i\in I}\subset]0,1]$, $\sum_{i\in I}\omega_i=1$ (e.g., $\omega_i\equiv 1/m$)
- $\mathcal{H} = \mathbb{R}^n$ and $\mathcal{H} = \bigotimes_{i \in I} \mathcal{H}$, with inner product $\sum_{i \in I} \omega_i \langle \cdot | \cdot \rangle$
- Diagonal subspace of \mathcal{H} : $D = \{(x, \ldots, x) | x \in \mathcal{H}\}$
- Block-averaging operator and its adjoint:

$$A\colon \mathcal{H} \to \mathcal{H}\colon (\boldsymbol{x}^1, \ldots, \boldsymbol{x}^m) \mapsto \sum_{i \in I} \omega_i \boldsymbol{x}^i \qquad A^* \colon x \mapsto (x, \ldots, x).$$

Projecting onto \boldsymbol{D} amounts to computing an average

$$\operatorname{proj}_{\boldsymbol{D}} \boldsymbol{x} = A^* A = A^* \sum_{i \in I} \omega_i \boldsymbol{x}^i.$$

9

Tools from the projection literature

Product space construction

- $\{\omega_i\}_{i\in I}\subset]0,1]$, $\sum_{i\in I}\omega_i=1$ (e.g., $\omega_i\equiv 1/m$)
- $\mathcal{H} = \mathbb{R}^n$ and $\mathcal{H} = \bigotimes_{i \in I} \mathcal{H}$, with inner product $\sum_{i \in I} \omega_i \langle \cdot | \cdot \rangle$
- Diagonal subspace of \mathcal{H} : $D = \{(x, \ldots, x) | x \in \mathcal{H}\}$
- Block-averaging operator and its adjoint:

$$A\colon \mathcal{H} \to \mathcal{H}\colon (\boldsymbol{x}^1, \ldots, \boldsymbol{x}^m) \mapsto \sum_{i \in I} \omega_i \boldsymbol{x}^i \qquad A^* \colon x \mapsto (x, \ldots, x).$$

Projecting onto D amounts to computing an average

$$\operatorname{proj}_{\boldsymbol{D}} x = A^* A = A^* \sum_{i \in I} \omega_i \boldsymbol{x}^i.$$

9

Tools from the projection literature

Product space construction

- $\mathcal{H} = imes_{i \in I} \mathcal{H}$
- $\boldsymbol{D} = \{(x, \ldots, x) \mid x \in \mathcal{H}\} \subset \mathcal{H}$

Tools from the projection literature

Product space construction

•
$$\mathcal{H} = imes_{i \in I} \mathcal{H}$$

•
$$\boldsymbol{D} = \{(x, \ldots, x) | x \in \mathcal{H}\} \subset \mathcal{H}$$

Proposition (Reformulation of
$$\bigcap_{i \in I} C_i$$
)

 $x \in \mathbf{D} \cap \bigotimes_{i \in I} C_i$ if and only if $x = (x, \dots, x)$ and $x \in \bigcap_{i \in I} C_i$

Product space relaxation

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (*)

$$\min_{\mathbf{x} \in \times_{i \in I}} \sum_{C_i} \underbrace{f(A\mathbf{x}) + \lambda_t \text{dist}_{D}^2(\mathbf{x})}_{F_{\lambda_t}(\mathbf{x})}. \quad (*)$$

11

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (\star)

 $\min_{\mathbf{x}\in \mathbf{D}\cap\times_{i\in I}C_i} f(A\mathbf{x}) = \min_{\mathbf{x}\in\times_{i\in I}C_i} f(A\mathbf{x}) + \iota_{\mathbf{D}}(\mathbf{x}).$

$$\underset{x \in \times_{i \in I} C_i}{\text{minimize}} \quad \underbrace{f(Ax) + \lambda_t \text{dist}_D^2(x)}_{F_{\lambda_t}(x)}. \quad (*)$$

11

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (\star)

$$\min_{\mathbf{x}\in\mathbf{D}\cap\times_{i\in I}C_i} f(A\mathbf{x}) = \min_{\mathbf{x}\in\times_{i\in I}C_i} f(A\mathbf{x}) + \iota_{\mathbf{D}}(\mathbf{x}).$$

Relaxation (for $\lambda_t \ge 0$)

$$\underset{\mathbf{x}\in\times_{i\in I}C_{i}}{\text{minimize}} \quad \underbrace{f(A\mathbf{x}) + \lambda_{t}\text{dist}_{D}^{2}(\mathbf{x})}_{F_{\lambda_{t}}(\mathbf{x})}. \quad (*)$$

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (\star)

$$\min_{\mathbf{x}\in\mathbf{D}\cap\times_{i\in I}C_i} f(A\mathbf{x}) = \min_{\mathbf{x}\in\times_{i\in I}C_i} f(A\mathbf{x}) + \iota_{\mathbf{D}}(\mathbf{x}).$$

Relaxation (for $\lambda_t \ge 0$)

 \rightarrow Relaxation is tractable with vanilla CG!

$$\underset{\mathbf{x} \in \times_{i \in I} C_{i}}{\text{minimize}} \underbrace{f(A\mathbf{x}) + \lambda_{t} \text{dist}_{D}^{2}(\mathbf{x})}_{F_{\lambda_{t}}(\mathbf{x})} \cdot (*) \qquad \nabla F_{\lambda_{t}}(\mathbf{x}) = A^{*} \nabla f(A\mathbf{x}) + \lambda_{t}(\mathbf{x} - \text{proj}_{D}\mathbf{x}) \\ \text{LMO}_{\times_{i \in I} C_{i}}(\mathbf{x}) = (\text{LMO}_{C_{1}}(\mathbf{x}^{1}), \dots, \text{LMO}_{C_{m}}(\mathbf{x}^{m}))$$

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (\star)

$$\min_{\mathbf{x}\in\mathbf{D}\cap\times_{i\in I}C_i} f(A\mathbf{x}) = \min_{\mathbf{x}\in\times_{i\in I}C_i} f(A\mathbf{x}) + \iota_{\mathbf{D}}(\mathbf{x}).$$

Relaxation (for $\lambda_t \ge 0$)

 \rightarrow Relaxation is tractable with vanilla CG!

$$\underset{\mathbf{x} \in \times_{i \in I} C_{i}}{\text{minimize}} \underbrace{f(A\mathbf{x}) + \lambda_{t} \text{dist}_{D}^{2}(\mathbf{x})}_{F_{\lambda_{t}}(\mathbf{x})} \cdot (*) \qquad \nabla F_{\lambda_{t}}(\mathbf{x}) = A^{*} \nabla f(A\mathbf{x}) + \lambda_{t}(\mathbf{x} - \text{proj}_{D}\mathbf{x}) \\ \text{LMO}_{\times_{i \in I} C_{i}}(\mathbf{x}) = (\text{LMO}_{C_{1}}(\mathbf{x}^{1}), \dots, \text{LMO}_{C_{m}}(\mathbf{x}^{m}))$$

Pseudocode:

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (\star)

$$\min_{\mathbf{x}\in\mathbf{D}\cap\times_{i\in I}C_i} f(A\mathbf{x}) = \min_{\mathbf{x}\in\times_{i\in I}C_i} f(A\mathbf{x}) + \iota_{\mathbf{D}}(\mathbf{x}).$$

Relaxation (for $\lambda_t \ge 0$)

 \rightarrow Relaxation is tractable with vanilla CG!

$$\underset{\mathbf{x}\in \times_{i\in I} C_{i}}{\text{minimize}} \underbrace{f(A\mathbf{x}) + \lambda_{t} \text{dist}_{D}^{2}(\mathbf{x})}_{F_{\lambda_{t}}(\mathbf{x})} \cdot (*) \qquad \nabla F_{\lambda_{t}}(\mathbf{x}) = A^{*} \nabla f(A\mathbf{x}) + \lambda_{t}(\mathbf{x} - \text{proj}_{D}\mathbf{x})$$
$$\text{LMO}_{\times_{i\in I} C_{i}}(\mathbf{x}) = (\text{LMO}_{C_{1}}(\mathbf{x}^{1}), \dots, \text{LMO}_{C_{m}}(\mathbf{x}^{m}))$$

Pseudocode:(A) Perform one CG step on (*);

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (\star)

$$\min_{\mathbf{x}\in\mathbf{D}\cap\times_{i\in I}C_i} f(A\mathbf{x}) = \min_{\mathbf{x}\in\times_{i\in I}C_i} f(A\mathbf{x}) + \iota_{\mathbf{D}}(\mathbf{x}).$$

Relaxation (for $\lambda_t \ge 0$)

 \rightarrow Relaxation is tractable with vanilla CG!

$$\underset{\mathbf{x}\in \times_{i\in I} C_{i}}{\text{minimize}} \underbrace{f(A\mathbf{x}) + \lambda_{t} \text{dist}_{D}^{2}(\mathbf{x})}_{F_{\lambda_{t}}(\mathbf{x})} \cdot (*) \qquad \nabla F_{\lambda_{t}}(\mathbf{x}) = A^{*} \nabla f(A\mathbf{x}) + \lambda_{t}(\mathbf{x} - \text{proj}_{D}\mathbf{x}) \\ \text{LMO}_{\times_{i\in I} C_{i}}(\mathbf{x}) = (\text{LMO}_{C_{1}}(\mathbf{x}^{1}), \dots, \text{LMO}_{C_{m}}(\mathbf{x}^{m})$$

Pseudocode:(A) Perform one CG step on (*); (B) Update λ_t ;

minimize
$$f(x)$$
 subject to $x \in \bigcap_{i \in I} C_i$, (\star)

$$\min_{\mathbf{x}\in\mathbf{D}\cap\times_{i\in I}C_i} f(A\mathbf{x}) = \min_{\mathbf{x}\in\times_{i\in I}C_i} f(A\mathbf{x}) + \iota_{\mathbf{D}}(\mathbf{x}).$$

Relaxation (for $\lambda_t \ge 0$)

 $x \in X_{i \in I} C_i$

 \rightarrow Relaxation is tractable with vanilla CG!

11

$$\underset{\mathbf{x}\in \times_{i\in I} C_{i}}{\text{minimize}} \underbrace{f(A\mathbf{x}) + \lambda_{t} \text{dist}_{D}^{2}(\mathbf{x})}_{F_{\lambda_{t}}(\mathbf{x})} \cdot (*) \qquad \nabla F_{\lambda_{t}}(\mathbf{x}) = A^{*} \nabla f(A\mathbf{x}) + \lambda_{t}(\mathbf{x} - \text{proj}_{D}\mathbf{x}) \\ \text{LMO}_{\times_{i\in I} C_{i}}(\mathbf{x}) = (\text{LMO}_{C_{1}}(\mathbf{x}^{1}), \dots, \text{LMO}_{C_{m}}(\mathbf{x}^{m})$$

Pseudocode:(A) Perform one CG step on (*); (B) Update λ_t ; (C) $t \leftarrow t + 1$.

2. Algorithm design The algorithm

Split Conditional Gradient (SCG) Algorithm

- **Require:** Point $x_0 \in \sum_{i \in I} \omega_i C_i$, smooth function f, weights $\{\omega_i\}_{i \in I} \subset [0, 1]$ such that $\sum_{i \in I} \omega_i = 1$
- 1: for t = 0, 1 to ... do
- 2: Choose penalty parameter $\lambda_t \in]0, +\infty[$
- 3: Choose step size $\gamma_t \in]0,1]$
- 4: $g_t \leftarrow \nabla f(x_t)$
- 5: **for** i = 1 **to** *m* **do**
- 6: $\boldsymbol{v}_t^i \leftarrow \text{LMO}_i(g_t + \lambda_t(\boldsymbol{x}_t^i \boldsymbol{x}_t))$
- 7: $\mathbf{x}_{t+1}^{i} \leftarrow \mathbf{x}_{t}^{i} + \gamma_{t}(\mathbf{v}_{t}^{i} \mathbf{x}_{t}^{i})$
- 8: end for

9:
$$x_{t+1} \leftarrow \sum_{i \in I} \omega_i \boldsymbol{x}_{t+1}^i$$

10: end for

Practical advantages:

- \rightarrow Uses individual LMOs
- ightarrow m LMO calls per iteration.
- \rightarrow Line 9: speeds up feasibility.

2. Algorithm design The algorithm

Split Conditional Gradient (SCG) Algorithm

- **Require:** Point $x_0 \in \sum_{i \in I} \omega_i C_i$, smooth function f, weights $\{\omega_i\}_{i \in I} \subset]0, 1]$ such that $\sum_{i \in I} \omega_i = 1$ 1: for t = 0, 1 to ... do
- 2: Choose penalty parameter $\lambda_t \in]0, +\infty[$
- 3: Choose step size $\gamma_t \in]0,1]$
- 4: $g_t \leftarrow \nabla f(x_t)$
- 5: **for** i = 1 **to** *m* **do**
- 6: $\boldsymbol{v}_t^i \leftarrow \text{LMO}_i(g_t + \lambda_t(\boldsymbol{x}_t^i \boldsymbol{x}_t))$
- 7: $\mathbf{x}_{t+1}^{i} \leftarrow \mathbf{x}_{t}^{i} + \gamma_{t}(\mathbf{v}_{t}^{i} \mathbf{x}_{t}^{i})$
- 8: end for

9:
$$x_{t+1} \leftarrow \sum_{i \in I} \omega_i \mathbf{x}_{t+1}^i$$

10: end for

Practical advantages:

- \rightarrow Uses individual LMOs
- ightarrow m LMO calls per iteration.
- \rightarrow Line 9: speeds up feasibility.

Question:

ightarrow Does it actually solve (*)? TL;DR: Yes. $\gamma_t = \mathcal{O}(1/\sqrt{t})$ and $\lambda_t = \mathcal{O}(\ln t)$ work.

$$\mathbf{x} \in \mathbf{D} \cap \bigotimes_{i \in I} C_i \Rightarrow A\mathbf{x} \in \bigcap_{i \in I} C_i,$$

so a feasible average is easier to satisfy than a feasible component!

$$\mathbf{x} \in \mathbf{D} \cap \bigotimes_{i \in I} C_i \Rightarrow A\mathbf{x} \in \bigcap_{i \in I} C_i,$$

so a feasible average is easier to satisfy than a feasible component!

Proposition

 $A\mathbf{x}_t \in \bigcap_{i \in I} C_i$ if and only if $\operatorname{proj}_D(\mathbf{x}) \in \bigotimes_{i \in I} C_i$.

Why does averaging help?

$$\mathbf{x} \in \mathbf{D} \cap \bigotimes_{i \in I} C_i \Rightarrow A\mathbf{x} \in \bigcap_{i \in I} C_i,$$

so a feasible average is easier to satisfy than a feasible component!

Proposition

 $A\mathbf{x}_t \in \bigcap_{i \in I} C_i$ if and only if $\operatorname{proj}_D(\mathbf{x}) \in \bigotimes_{i \in I} C_i$.

Figure: Darker shaded region $\{ x \in \mathcal{H} \mid Ax \in \bigcap_{i \in I} C_i \}$ contains the segment $D \cap \bigotimes_{i \in I} C_i$.

Splitting the Conditional Gradient Algorithm

${f 1}$. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms

2. Algorithm design

3. Convergence guarantees

Convergence of the subproblems

Proposition (Convergence of relaxed problems)

Let $(\lambda_t)_{t\in\mathbb{N}} \to +\infty$. For every $t\in\mathbb{N}$, set $F_t = f \circ A + \lambda_t \operatorname{dist}^2_{D}/2 + \iota_{X_{i\in I}C_i}$. Then

- 1. F_t converges pointwise to $f \circ A + \iota_{\mathbf{D} \cap \times_{i \in I} C_i}$.
- 2. F_t converges epigraphically to $f \circ A + \iota_{D \cap \times_{i \in I} C_i}$.
- 3. ∂F_n converges graphically to $\partial (f \circ A + \iota_{\mathbf{D} \cap \times_{i \in I} C_i})$.

where epigraphical and graphical convergence are in, e.g., [Rockafellar/Wets, '09].

Proposition (Convergence of optimal values for $\lambda_t \nearrow +\infty$)

$$\lim_{t\to+\infty}\left(\inf_{\boldsymbol{x}\in\times_{i\in I}}F_{\lambda_t}(\boldsymbol{x})\right)\to\inf_{\boldsymbol{x}\in\times_{i\in I}}C_i}\left(\lim_{t\to\infty}F_{\lambda_t}(\boldsymbol{x})\right)=\inf_{\boldsymbol{x}\in\bigcap_{i\in I}}f(\boldsymbol{x}).$$

Theorem (Convex convergence)

Let f be convex and L_f -smooth, let $(C_i)_{i \in I}$ be nonempty compact convex subsets of \mathcal{H} with diameters $\{R_i\}_{i \in I} \subset [0, +\infty[$ such that $\bigcap_{i \in I} C_i \neq \emptyset$, and for every $\lambda \ge 0$, set $F_{\lambda} \colon \mathbf{x} \mapsto f(A\mathbf{x}) + \frac{\lambda}{2} \operatorname{dist}^2_{\mathbf{D}}(\mathbf{x})$. Let $\lambda_0 > 0$ and $\lambda_{t+1} = \lambda_t + (\sqrt{t} + 2)^{-2}$ and $\gamma_t = 2/(\sqrt{t} + 2)$. Then

$$0 \leqslant F_{\lambda_t}(\boldsymbol{x}_t) - F_{\lambda_t}(\boldsymbol{x}_t^*) \leqslant \mathcal{O}\left(\frac{\ln t}{\sqrt{t}}\right)$$

In particular,

- 1. $F_{\lambda_t}(\boldsymbol{x}_t) \to \inf_{x \in \bigcap_{i \in I} C_i} f(x)$ and $\operatorname{dist}_{\boldsymbol{D}}(\boldsymbol{x}_t) \to 0$.
- 2. Every accumulation point \mathbf{x}_{∞} of $(\mathbf{x}_t)_{t\in\mathbb{N}}$ produces a solution $A\mathbf{x}_{\infty} \in \bigcap_{i\in I} C_i$ such that $f(A\mathbf{x}_{\infty}) = \inf_{x\in\bigcap_{i\in I} C_i} c_i f(x)$.

Theorem (Convex convergence)

Let f be convex and L_f -smooth, let $(C_i)_{i \in I}$ be nonempty compact convex subsets of \mathcal{H} with diameters $\{R_i\}_{i \in I} \subset [0, +\infty[$ such that $\bigcap_{i \in I} C_i \neq \emptyset$, and for every $\lambda \ge 0$, set $F_{\lambda} \colon \mathbf{x} \mapsto f(A\mathbf{x}) + \frac{\lambda}{2} \operatorname{dist}_{\mathbf{D}}^2(\mathbf{x})$. Let $\lambda_0 > 0$ and $\lambda_{t+1} = \lambda_t + (\sqrt{t} + 2)^{-2}$ and $\gamma_t = 2/(\sqrt{t} + 2)$. Then

$$0 \leqslant F_{\lambda_t}(\boldsymbol{x}_t) - F_{\lambda_t}(\boldsymbol{x}_t^*) \leqslant \mathcal{O}\left(\frac{\ln t}{\sqrt{t}}\right)$$

In particular,

- 1. $F_{\lambda_t}(\boldsymbol{x}_t) \to \inf_{x \in \bigcap_{i \in I} C_i} f(x)$ and $\operatorname{dist}_{\boldsymbol{D}}(\boldsymbol{x}_t) \to 0$.
- 2. Every accumulation point \mathbf{x}_{∞} of $(\mathbf{x}_t)_{t\in\mathbb{N}}$ produces a solution $A\mathbf{x}_{\infty} \in \bigcap_{i\in I} C_i$ such that $f(A\mathbf{x}_{\infty}) = \inf_{x\in\bigcap_{i\in I} C_i} f(x)$.

We believe this rate can be improved!

Nonconvex case

Theorem (Nonconvex convergence)

Let f be L_{f} -smooth, let $(C_{i})_{i \in I}$ be nonempty compact convex subsets of \mathcal{H} with diameters $\{R_{i}\}_{i \in I} \subset [0, +\infty[$ such that $\bigcap_{i \in I} C_{i} \neq \emptyset$, and for every $\lambda \ge 0$, set $F_{\lambda} \colon \mathbf{x} \mapsto f(A\mathbf{x}) + \frac{\lambda}{2} \operatorname{dist}_{\mathbf{D}}^{2}(\mathbf{x})$. Let $\lambda_{t} = \sum_{k=0}^{t-1} \frac{1}{k} (k+1)$ and $\gamma_{t} = \frac{1}{\sqrt{t}}$. Then,

$$0 \leqslant \frac{1}{t} \sum_{k=0}^{t-1} \left\langle \nabla F_{\lambda_k}(\boldsymbol{x}_k) \mid \boldsymbol{x}_k - \boldsymbol{v}_k \right\rangle \leqslant \mathcal{O}\left(\frac{\ln t}{\sqrt{t}} + \frac{1}{\sqrt{t}}\right).$$

In particular, there exists a subsequence $(t_k)_{k\in\mathbb{N}}$ such that

- 1. $(\langle \nabla F_{\lambda_{t_k}}(\boldsymbol{x}_{t_k}) \mid \boldsymbol{x}_{t_k} \boldsymbol{v}_{t_k} \rangle)_{k \in \mathbb{N}} \to 0 \text{ and } \operatorname{dist}_{\boldsymbol{D}}(\boldsymbol{x}_{t_k}) \to 0.$
- 2. Furthermore, every accumulation point \mathbf{x}_{∞} of $(\mathbf{x}_{t_k})_{k \in \mathbb{N}}$ yields a stationary point $A\mathbf{x}_{\infty} \in \bigcap_{i \in I} C_i$ of the problem (*).

ZUSE INSTITUTE BERLIN

Best-known rates / Future work

	<i>m</i> = 2	<i>m</i> > 2	f convex	f nonconvex
[Pedregosa et al., '20]	×	×	$\mathcal{O}\left(rac{1}{t} ight)$	$\mathcal{O}\left(rac{1}{\sqrt{t}} ight)$
[Gidel et al. '18]	~	×	$\mathcal{O}\left(rac{1}{t} ight)$	×
[Yurtsever et al. '19], [Lan et al., '21] ^(✔)	~	~	$\mathcal{O}\left(\frac{1}{\sqrt{t}}\right)$	×
[ZW/Pokutta '23]	~	~	~	$\mathcal{O}\left(\frac{\ln t}{\sqrt{t}}\right)$

ZUSE INSTITUTE BERLIN

Best-known rates / Future work

	<i>m</i> = 2	<i>m</i> > 2	f convex	f nonconvex	
[Pedregosa et al., '20]	×	×	$\mathcal{O}\left(rac{1}{t} ight)$	$\mathcal{O}\left(rac{1}{\sqrt{t}} ight)$	←
[Gidel et al. '18]	~	×	$\mathcal{O}\left(rac{1}{t} ight)$	×	
[Yurtsever et al. '19], [Lan et al., '21] ^(✔)	~	~	$\mathcal{O}\left(\frac{1}{\sqrt{t}}\right)$	×	
[ZW/Pokutta '23]	~	~	~	$\mathcal{O}\left(\frac{\ln t}{\sqrt{t}}\right)$	←

Usually, there is a quadratic speed-up from nonconvex and convex rates.

ZUSE

Best-known rates / Future work

	<i>m</i> = 2	<i>m</i> > 2	f convex	f nonconvex	
[Pedregosa et al., '20]	×	×	$\mathcal{O}\left(rac{1}{t} ight)$	$\mathcal{O}\left(rac{1}{\sqrt{t}} ight)$	
[Gidel et al. '18]	~	×	$\mathcal{O}\left(rac{1}{t} ight)$	×	←
[Yurtsever et al. '19], [Lan et al., '21] ^(✔)	~	~	$\mathcal{O}\left(\frac{1}{\sqrt{t}}\right)$	×	←
[ZW/Pokutta '23]	~	~	~	$\mathcal{O}\left(rac{\ln t}{\sqrt{t}} ight)$	

Usually, there is a quadratic speed-up from nonconvex and convex rates. Is the gap between m = 2 and m > 2 actually necessary?

Thank you for your attention!

References

- G. Braun, S. Pokutta, and R. Weismantel, Alternating linear minimization: revisiting von Neumann's alternating projections preprint, arXiv: 2212.02933
- R. Díaz Millán and O. P. Ferreira and L. F. Prudente, Alternating conditional gradient method for convex feasibility problems *Comput. Optim. Appl.*, vol. 80, pp. 245–269, 2021
- G. Gidel, F. Pedregosa, and S. Lacoste-Julien, Frank-Wolfe splitting via augmented Lagrangian Method *Proc. AISTATS*, pp. 1456–1465, 2018.

- N. He and Z. Harchaoui, Semi-proximal mirror-prox for nonsmooth composite minimization *Proc. NeurIPS*, vol. 28, 2015
- V. Kolmogorov and T. Pock, One-sided Frank-Wolfe algorithms for saddle problems *Proc. ICML*, PMLR, vol. 139, pp. 5665–5675, 2021
 - G. Lan, E. Romeijn, and Z. Zhou, Conditional gradient methods for convex optimization with general affine and nonlinear constraints *SIAM J. Optim.*, vol. 31, no. 3, pp. 2307–2339, 2021.

3. Convergence guarantees **Refrences**

- Y-F. Liu, X. Liu, and S. Ma, On the nonergodic convergence rate of an inexact augmented Lagrangian framework for composite convex programming *Math. Oper. Res.*, vol. 44, no. 2 pp. 632–650, 2019
- F. Pedregosa, G. Negiar, A. Askari, and M. Jaggi, Linearly convergent Frank-Wolfe with backtracking line-search *Proc. AISTATS*, pp. 1–10, 2020.
- R. T. Rockafellar, and R. J-B Wets, Variational Analysis Springer, 2009
- - A. Silveti-Falls, C. Molinari, and J. Fadili, Linearly convergent Frank-Wolfe with backtracking line-search *SIAM J. Optim.*, vol. 30, no. 4, pp. 2687-2725, 2020.
- A. Yurtsever, O. Fercoq, and V. Cevher, A conditional-gradient-based augmented Lagrangian framework *Proc. ICML*, pp. 7272–7281, 2019.