
1

Splitting the
Conditional Gradient
Algorithm
INFORMS Annual Meeting
Zev Woodstock
October 2023

mailto:woodstock@zib.de


2

Results are joint work with...

Sebastian Pokutta
ZIB & Technische
Universität Berlin

Interactive Optimization & Learning (IOL) Lab
iol.zib.de

mailto:pokutta@zib.de
https://iol.zib.de/


3

Splitting the Conditional Gradient Algorithm

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

2. Algorithm design

3. Convergence guarantees
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1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Algorithms for one constraint
Classical problem setup

Given a smooth function f : Rn → R and a nonempty compact convex set C ,

minimize f (x) subject to x ∈ C . (1)

Two iterative first-order algorithms for solving (1) differ in how x ∈ C is enforced.

Projected gradient descent: Requires
the projection onto C , projC :

y 7→ arg min
x∈C

‖x − y‖2 (PROJ)

Conditional gradient: Requires the
linear minimization oracle of C , LMOC :

y 7→ p ∈ arg min
x∈C
〈y | x〉 (LMO)

[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, (PROJ) is more expensive than (LMO).
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . . )
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1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

What about multiple constraints?
Splitting problem setup
Given a smooth function f : Rn → R and compact convex sets (Ci )i∈I (I = {1, . . . ,m}),

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

Issue: Computing the projection or LMO for ⋂i∈I Ci is prohibitively expensive.
Projection-based splitting algorithms (e.g., Forward-Backward, Douglas-Rachford,
projective splitting, etc.), enforce constraints via projections onto the individual sets

Use projC1 , projC2 , . . . instead of proj(⋂i∈I Ci)

Simpler tools → previously intractable problems become solvable on a larger scale.
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1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

What if projections are too expensive?

LMO-based splitting algorithms, enforce constraints
via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂i∈I Ci)

Relatively little has been done in this field.

→ Unlike projections, LMOs are discontinuous.
→ “CTRL+F / Replace proj with LMO” fails.
→ “State-of-the-art” relies on inexact prox-based

algorithms (mostly Augmented Lagrangians).

LMO⋂
i∈I Ci

LMOC1 , . . . LMOCm
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1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Previous work
“Use a CG subroutine to approximate a projection” ⇒ high iteration complexity
[He/Harchaoui, ’15], [Liu et al., ’19] [Millan et al., ’21], [Kolmogorov/Pock, ’21]
Currently, lowest iteration complexity is O(m): one LMO per set.

m = 2 m > 2 f convex f nonconvex Analysis
[Pedregosa et al., ’20] 8 8 4 4 CG
[Braun et al., ’22] 4 8 8(f = 0) 8 CG
[Gidel et al. ’18] 4 8 4 8 AL+CG

[Yurtsever et al. ’19],
[Silvetti-Falls et al. ’20] 4 4 4 8 AL+CG

[Lan et al., ’21] (4) (4) 4 8 CG
[ZW/Pokutta ’23] 4 4 4 4 CG

(4)- requires additional structure on (Ci )i∈I
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2. Algorithm design

Tools from the projection literature
Product space construction

• {ωi}i∈I ⊂ ]0, 1], ∑i∈I ωi = 1 (e.g., ωi ≡ 1/m)
• H = Rn and H =×i∈I H, with inner product ∑i∈I ωi〈· | ·〉
• Diagonal subspace of H: D = {(x , . . . , x) | x ∈ H}
• Block-averaging operator and its adjoint:

A : H→ H : (x1, . . . , xm) 7→
∑
i∈I

ωix i A∗ : x 7→ (x , . . . , x).

Projecting onto D amounts to computing an average

projD x = A∗A = A∗
∑
i∈I

ωix i .
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2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.



11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.



11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.



11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.



11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.



11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.



11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.



11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.
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2. Algorithm design

The algorithm

Split Conditional Gradient (SCG) Algorithm

Require: Point x0 ∈
∑

i∈I ωiCi , smooth function f ,
weights {ωi}i∈I ⊂ ]0, 1] such that ∑i∈I ωi = 1

1: for t = 0, 1 to . . . do
2: Choose penalty parameter λt ∈ ]0,+∞[
3: Choose step size γt ∈ ]0, 1]
4: gt ← ∇f (xt)
5: for i = 1 to m do
6: v i

t ← LMOi (gt + λt(x i
t − xt))

7: x i
t+1 ← x i

t + γt(v i
t − x i

t)
8: end for
9: xt+1 ←

∑
i∈I ωix i

t+1
10: end for

Practical advantages:
→ Uses individual LMOs
→ m LMO calls per iteration.
→ Line 9: speeds up feasibility.

Question:
→ Does it actually solve (?)?
TL;DR: Yes.
γt = O(1/

√
t) and λt = O(ln t)

work.
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2. Algorithm design

Why does averaging help?

x ∈ D ∩×
i∈I

Ci ⇒ Ax ∈
⋂
i∈I

Ci ,

so a feasible average is easier to
satisfy than a feasible component!

Proposition

Axt ∈
⋂

i∈I Ci if and only if
projD(x) ∈×i∈I Ci .
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C2

C1
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H

H
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Figure: Darker shaded region {x ∈H |Ax ∈
⋂

i∈I Ci}
contains the segment D ∩×i∈I Ci .
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Splitting the Conditional Gradient Algorithm

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

2. Algorithm design

3. Convergence guarantees
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3. Convergence guarantees

Convergence of the subproblems
Proposition (Convergence of relaxed problems)

Let (λt)t∈N → +∞. For every t ∈ N, set Ft = f ◦ A + λt dist2
D /2 + ι×i∈I Ci . Then

1. Ft converges pointwise to f ◦ A + ιD∩×i∈I Ci .

2. Ft converges epigraphicallly to f ◦ A + ιD∩×i∈I Ci .

3. ∂Fn converges graphically to ∂(f ◦ A + ιD∩×i∈I Ci ).

where epigraphical and graphical convergence are in, e.g., [Rockafellar/Wets, ’09].

Proposition (Convergence of optimal values for λt ↗ +∞)

lim
t→+∞

(
inf

x∈×i∈I Ci
Fλt (x)

)
→ inf

x∈×i∈I Ci

(
lim

t→∞
Fλt (x)

)
= inf

x∈
⋂

i∈I Ci
f (x).
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3. Convergence guarantees

Convex case
Theorem (Convex convergence)

Let f be convex and Lf -smooth, let (Ci )i∈I be nonempty compact convex subsets of H
with diameters {Ri}i∈I ⊂ [0,+∞[ such that ⋂i∈I Ci 6= ∅, and for every λ > 0, set
Fλ : x 7→ f (Ax) + λ

2 dist2
D(x). Let λ0 > 0 and λt+1 = λt + (

√
t + 2)−2 and

γt = 2/(
√

t + 2). Then

0 6 Fλt (xt)− Fλt (x∗t ) 6 O
( ln t√

t

)
In particular,

1. Fλt (xt)→ infx∈
⋂

i∈I Ci
f (x) and distD(xt)→ 0.

2. Every accumulation point x∞ of (xt)t∈N produces a solution Ax∞ ∈
⋂

i∈I Ci such
that f (Ax∞) = infx∈

⋂
i∈I Ci

f (x).

We believe this rate can be improved!
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3. Convergence guarantees

Nonconvex case
Theorem (Nonconvex convergence)

Let f be Lf -smooth, let (Ci )i∈I be nonempty compact convex subsets of H with
diameters {Ri}i∈I ⊂ [0,+∞[ such that ⋂i∈I Ci 6= ∅, and for every λ > 0, set
Fλ : x 7→ f (Ax) + λ

2 dist2
D(x). Let λt = ∑t−1

k=0 1/(k + 1) and γt = 1/
√

t. Then,

0 6
1
t

t−1∑
k=0

〈
∇Fλk (xk)

∣∣ xk − vk
〉
6 O

( ln t√
t

+ 1√
t

)
.

In particular, there exists a subsequence (tk)k∈N such that
1. (〈∇Fλtk

(xtk ) | xtk − v tk 〉)k∈N → 0 and distD(xtk )→ 0.
2. Furthermore, every accumulation point x∞ of (xtk )k∈N yields a stationary point

Ax∞ ∈
⋂

i∈I Ci of the problem (?).
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3. Convergence guarantees

Best-known rates / Future work

m = 2 m > 2 f convex f nonconvex
[Pedregosa et al., ’20] 8 8 O

(1
t

)
O
( 1√

t

)
[Gidel et al. ’18] 4 8 O

(1
t

)
8

[Yurtsever et al. ’19],
[Lan et al., ’21](4) 4 4 O

( 1√
t

)
8

[ZW/Pokutta ’23] 4 4 4 O
( ln t√

t

)
←−

Usually, there is a quadratic speed-up from nonconvex and convex rates.
Is the gap between m = 2 and m > 2 actually necessary?
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Thank you for your attention!
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