

Results are joint work with...

Sebastian Pokutta ZIB \& Technische Universität Berlin

Interactive Optimization \& Learning (IOL) Lab iol.zib.de

Splitting the Conditional Gradient Algorithm

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms
2. Algorithm design
3. Convergence guarantees
4. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms Algorithms for one constraint

Classical problem setup
Given a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a nonempty compact convex set C,
minimize $f(x)$ subject to $x \in C$.

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms Algorithms for one constraint

Classical problem setup
Given a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a nonempty compact convex set C,

$$
\text { minimize } f(x) \text { subject to } x \in C \text {. }
$$

Two iterative first-order algorithms for solving (1)
Projected gradient descent:
Conditional gradient:

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms Algorithms for one constraint

Classical problem setup
Given a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a nonempty compact convex set C,

$$
\text { minimize } f(x) \text { subject to } x \in C \text {. }
$$

Two iterative first-order algorithms for solving (1) differ in how $x \in C$ is enforced.
Projected gradient descent:
Conditional gradient:

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms

Algorithms for one constraint

Classical problem setup

Given a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a nonempty compact convex set C,

$$
\text { minimize } f(x) \text { subject to } x \in C
$$

Two iterative first-order algorithms for solving (1) differ in how $x \in C$ is enforced.
Projected gradient descent: Requires the projection onto C, proj $_{C}$:

$$
\begin{equation*}
y \mapsto \underset{x \in C}{\arg \min }\|x-y\|^{2} \tag{PROJ}
\end{equation*}
$$

Algorithms for one constraint

Classical problem setup

Given a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a nonempty compact convex set C,

$$
\text { minimize } f(x) \text { subject to } x \in C
$$

Two iterative first-order algorithms for solving (1) differ in how $x \in C$ is enforced.

Projected gradient descent: Requires the projection onto $C, \operatorname{proj}_{C}$:

$$
\begin{equation*}
y \mapsto \underset{x \in C}{\arg \min }\|x-y\|^{2} \tag{PROJ}
\end{equation*}
$$

Conditional gradient: Requires the linear minimization oracle of C, LMO_{C} :

$$
\begin{equation*}
y \mapsto p \in \arg \min _{x \in C}\langle y \mid x\rangle \tag{LMO}
\end{equation*}
$$

Algorithms for one constraint

Classical problem setup

Given a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a nonempty compact convex set C,

$$
\begin{equation*}
\text { minimize } f(x) \text { subject to } x \in C \tag{1}
\end{equation*}
$$

Two iterative first-order algorithms for solving (1) differ in how $x \in C$ is enforced.

Projected gradient descent: Requires the projection onto C, proj $_{C}$:

$$
\begin{equation*}
y \mapsto \underset{x \in C}{\arg \min }\|x-y\|^{2} \tag{PROJ}
\end{equation*}
$$

[Combettes/Pokutta, '21]: For many constraints, (PROJ) is more expensive than (LMO). (e.g., nuclear norm ball, ℓ_{1} ball, probability simplex, Birkhoff polytope, general LP, ...)

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms What about multiple constraints?

Splitting problem setup

Given a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and compact convex sets $\left(C_{i}\right)_{i \in I} \quad(I=\{1, \ldots, m\})$,

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i} \text {, }
$$

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms What about multiple constraints?

Splitting problem setup

Given a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and compact convex sets $\left(C_{i}\right)_{i \in I}(I=\{1, \ldots, m\})$,

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i} \text {, }
$$

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory
Issue: Computing the projection or LMO for $\bigcap_{i \in I} C_{i}$ is prohibitively expensive.

What about multiple constraints?

Splitting problem setup

Given a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and compact convex sets $\left(C_{i}\right)_{i \in I} \quad(I=\{1, \ldots, m\})$,

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i} \text {, }
$$

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory
Issue: Computing the projection or LMO for $\bigcap_{i \in I} C_{i}$ is prohibitively expensive. Projection-based splitting algorithms (e.g., Forward-Backward, Douglas-Rachford, projective splitting, etc.), enforce constraints via projections onto the individual sets

$$
\text { Use }^{\operatorname{proj}} C_{1}, \quad \operatorname{proj}_{C_{2}}, \ldots \text { instead of } \operatorname{proj}_{\left(\bigcap_{i \in I} C_{i}\right)}
$$

What about multiple constraints?

Splitting problem setup

Given a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and compact convex sets $\left(C_{i}\right)_{i \in I}(I=\{1, \ldots, m\})$,

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i} \text {, }
$$

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory
Issue: Computing the projection or LMO for $\bigcap_{i \in I} C_{i}$ is prohibitively expensive. Projection-based splitting algorithms (e.g., Forward-Backward, Douglas-Rachford, projective splitting, etc.), enforce constraints via projections onto the individual sets

$$
\text { Use }^{\operatorname{proj}}{c_{1}}, \quad \operatorname{proj}_{c_{2}}, \ldots \text { instead of } \operatorname{proj}_{\left(\bigcap_{i \in I} c_{i}\right)}
$$

Simpler tools \rightarrow previously intractable problems become solvable on a larger scale.

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms What if projections are too expensive?

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use $\mathrm{LMO}_{C_{1}}, \mathrm{LMO}_{C_{2}}, \ldots$ instead of $\mathrm{LMO}_{\left(\bigcap_{i \in 1} C_{i}\right)}$

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms What if projections are too expensive?

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use $\mathrm{LMO}_{C_{1}}, \mathrm{LMO}_{C_{2}}, \ldots$ instead of $\mathrm{LMO}_{\left(\bigcap_{i \in 1} C_{i}\right)}$
Relatively little has been done in this field.

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms What if projections are too expensive?

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets

Use $\mathrm{LMO}_{C_{1}}, \mathrm{LMO}_{C_{2}}, \ldots$ instead of $\mathrm{LMO}\left(\bigcap_{i \in 1} C_{i}\right)$
Relatively little has been done in this field.
\rightarrow Unlike projections, LMOs are discontinuous.
\rightarrow "CTRL+F / Replace proj with LMO" fails.

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms What if projections are too expensive?

LMO-based splitting algorithms, enforce constraints via LMOs for the individual sets
Use $\mathrm{LMO}_{C_{1}}, \mathrm{LMO}_{C_{2}}, \ldots$ instead of $\mathrm{LMO}\left(\bigcap_{i \in 1} C_{i}\right)$

Relatively little has been done in this field.
\rightarrow Unlike projections, LMOs are discontinuous.
\rightarrow "CTRL+F / Replace proj with LMO" fails.
\rightarrow "State-of-the-art" relies on inexact prox-based algorithms (mostly Augmented Lagrangians).

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms

Previous work

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms

Previous work

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]
Currently, lowest iteration complexity is $\mathcal{O}(m)$: one LMO per set.

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms

Previous work

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]
Currently, lowest iteration complexity is $\mathcal{O}(m)$: one LMO per set.

	$m=2$	$m>2$	f convex	f nonconvex	Analysis
[Pedregosa et al., '20]	\mathbf{x}	\mathbf{X}	\checkmark	\nearrow	CG
[Braun et al., '22]	$\boldsymbol{\checkmark}$	\mathbf{X}	$\mathbf{X}(f=0)$	\mathbf{X}	CG

Previous work

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]
Currently, lowest iteration complexity is $\mathcal{O}(m)$: one LMO per set.

	$m=2$	$m>2$	f convex	f nonconvex	Analysis
[Pedregosa et al., '20]	\mathbf{x}	\mathbf{x}	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	CG
[Braun et al., '22]	\checkmark	\mathbf{x}	$\mathbf{x}(f=0)$	\mathbf{x}	CG
[Gidel et al. '18]	\checkmark	\mathbf{x}	$\boldsymbol{\checkmark}$	\mathbf{x}	AL+CG

(\boldsymbol{V}) - requires additional structure on $\left(C_{i}\right)_{i \in I}$

Previous work

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]
Currently, lowest iteration complexity is $\mathcal{O}(m)$: one LMO per set.

	$m=2$	$m>2$	f convex	f nonconvex	Analysis
[Pedregosa et al., '20]	x	X	\checkmark	\checkmark	CG
[Braun et al., '22]	\checkmark	x	$\mathbf{X}(f=0)$	x	CG
[Gidel et al. '18]	\checkmark	X	\checkmark	X	AL+CG
[Yurtsever et al. '19], [Silvetti-Falls et al. '20]	\checkmark	\checkmark	\checkmark	x	AL+CG
[Lan et al., '21]	(\checkmark)	(\checkmark)	\checkmark	X	CG

(\boldsymbol{V}) - requires additional structure on $\left(C_{i}\right)_{i \in I}$

Previous work

"Use a CG subroutine to approximate a projection" \Rightarrow high iteration complexity [He/Harchaoui, '15], [Liu et al., '19] [Millan et al., '21], [Kolmogorov/Pock, '21]
Currently, lowest iteration complexity is $\mathcal{O}(m)$: one LMO per set.

	$m=2$	$m>2$	f convex	f nonconvex	Analysis
[Pedregosa et al., '20]	\mathbf{x}	\mathbf{x}	\checkmark	\checkmark	CG
[Braun et al., '22]	\checkmark	\mathbf{x}	$\mathbf{x}(f=0)$	\mathbf{x}	CG
[Gidel et al. '18]	\checkmark	\mathbf{x}	\checkmark	\mathbf{x}	AL+CG
[Yurtsever et al. '19], [Silvetti-Falls et al. '20]	\checkmark	\checkmark	\checkmark	\mathbf{x}	AL+CG
[Lan et al., '21]	(\checkmark)	(\checkmark)	\checkmark	\mathbf{x}	CG
[ZW/Pokutta '23]	\checkmark	\checkmark	\checkmark	\checkmark	CG

(\boldsymbol{V}) - requires additional structure on $\left(C_{i}\right)_{i \in I}$

Splitting the Conditional Gradient Algorithm

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms
2. Algorithm design
3. Convergence guarantees

Tools from the projection literature

Product space construction

- $\left.\left.\left\{\omega_{i}\right\}_{i \in I} \subset\right] 0,1\right], \sum_{i \in I} \omega_{i}=1$ (e.g., $\left.\omega_{i} \equiv 1 / m\right)$
- $\mathcal{H}=\mathbb{R}^{n}$ and $\mathcal{H}=X_{i \in I} \mathcal{H}$, with inner product $\sum_{i \in I} \omega_{i}\langle\cdot \mid \cdot\rangle$
- Diagonal subspace of $\mathcal{H}: \boldsymbol{D}=\{(x, \ldots, x) \mid x \in \mathcal{H}\}$

[^0]
Tools from the projection literature

Product space construction

- $\left.\left.\left\{\omega_{i}\right\}_{i \in I} \subset\right] 0,1\right], \sum_{i \in I} \omega_{i}=1$ (e.g., $\left.\omega_{i} \equiv 1 / m\right)$
- $\mathcal{H}=\mathbb{R}^{n}$ and $\mathcal{H}=X_{i \in I} \mathcal{H}$, with inner product $\sum_{i \in I} \omega_{i}\langle\cdot \mid \cdot\rangle$
- Diagonal subspace of $\mathcal{H}: \boldsymbol{D}=\{(x, \ldots, x) \mid x \in \mathcal{H}\}$
- Block-averaging operator and its adjoint:

$$
A: \mathcal{H} \rightarrow \mathcal{H}:\left(\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{m}\right) \mapsto \sum_{i \in I} \omega_{i} \boldsymbol{x}^{i} \quad A^{*}: x \mapsto(x, \ldots, x)
$$

Tools from the projection literature

Product space construction

- $\left.\left.\left\{\omega_{i}\right\}_{i \in I} \subset\right] 0,1\right], \sum_{i \in I} \omega_{i}=1$ (e.g., $\left.\omega_{i} \equiv 1 / m\right)$
- $\mathcal{H}=\mathbb{R}^{n}$ and $\mathcal{H}=X_{i \in I} \mathcal{H}$, with inner product $\sum_{i \in I} \omega_{i}\langle\cdot \mid \cdot\rangle$
- Diagonal subspace of $\mathcal{H}: \boldsymbol{D}=\{(x, \ldots, x) \mid x \in \mathcal{H}\}$
- Block-averaging operator and its adjoint:

$$
A: \mathcal{H} \rightarrow \mathcal{H}:\left(\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{m}\right) \mapsto \sum_{i \in I} \omega_{i} \boldsymbol{x}^{i} \quad A^{*}: x \mapsto(x, \ldots, x)
$$

Projecting onto \boldsymbol{D} amounts to computing an average

$$
\operatorname{proj}_{D} x=A^{*} A=A^{*} \sum_{i \in I} \omega_{i} x^{i}
$$

Tools from the projection literature

Product space construction

- $\mathcal{H}=X_{i \in I} \mathcal{H}$
- $\boldsymbol{D}=\{(x, \ldots, x) \mid x \in \mathcal{H}\} \subset \mathcal{H}$

zUSE $\underset{\substack{\text { INSTITU } \\ \text { BERLIN }}}{ }$

2. Algorithm design

Tools from the projection literature

Product space construction

- $\mathcal{H}=X_{i \in I} \mathcal{H}$
- $\boldsymbol{D}=\{(x, \ldots, x) \mid x \in \mathcal{H}\} \subset \mathcal{H}$

Proposition (Reformulation of $\bigcap_{i \in I} C_{i}$)
$\boldsymbol{x} \in \boldsymbol{D} \cap X_{i \in I} C_{i}$ if and only if $\boldsymbol{x}=(x, \ldots, x)$ and $x \in \bigcap_{i \in I} C_{i}$

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i}
$$

2. Algorithm design

Product space relaxation

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i} \text {, }
$$

admits the equivalent reformulation (via the $0-\infty$ indicator function ι_{D})

$$
\underset{x \in D \cap X_{i \in \prime} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})=\underset{x \in X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})+\iota_{\boldsymbol{D}}(\boldsymbol{x}) .
$$

2. Algorithm design

Product space relaxation

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i} \text {, }
$$

admits the equivalent reformulation (via the $0-\infty$ indicator function ι_{D})

$$
\underset{x \in D \cap X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})=\underset{x \in X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})+\iota_{\boldsymbol{D}}(\boldsymbol{x}) .
$$

Relaxation (for $\lambda_{t} \geqslant 0$)
$\operatorname{minimize}_{\boldsymbol{x} \in X_{i \in I} C_{i}} \underbrace{f(A \boldsymbol{x})+\lambda_{t} \operatorname{dist}_{D}^{2}(\boldsymbol{x})}_{F_{\lambda_{t}}(\boldsymbol{x})} .(*)$
2. Algorithm design

Product space relaxation

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i} \text {, }
$$

admits the equivalent reformulation (via the $0-\infty$ indicator function ι_{D})

$$
\underset{x \in D \cap X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})=\underset{x \in X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})+\iota_{\boldsymbol{D}}(\boldsymbol{x}) .
$$

Relaxation (for $\lambda_{t} \geqslant 0$)
\rightarrow Relaxation is tractable with vanilla CG!

2. Algorithm design

Product space relaxation

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i} \text {, }
$$

admits the equivalent reformulation (via the $0-\infty$ indicator function ι_{D})

$$
\underset{x \in D \cap X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})=\underset{x \in X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})+\iota_{\boldsymbol{D}}(\boldsymbol{x}) .
$$

Relaxation (for $\lambda_{t} \geqslant 0$)
\rightarrow Relaxation is tractable with vanilla CG!

Pseudocode:
2. Algorithm design

Product space relaxation

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i} \text {, }
$$

admits the equivalent reformulation (via the $0-\infty$ indicator function ι_{D})

$$
\underset{x \in D \cap X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})=\underset{x \in X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})+\iota_{\boldsymbol{D}}(\boldsymbol{x}) .
$$

Relaxation (for $\lambda_{t} \geqslant 0$)
\rightarrow Relaxation is tractable with vanilla CG!

Pseudocode:(A) Perform one CG step on (*);
2. Algorithm design

Product space relaxation

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i} \text {, }
$$

admits the equivalent reformulation (via the $0-\infty$ indicator function ι_{D})

$$
\underset{x \in D \cap X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})=\underset{x \in X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})+\iota_{\boldsymbol{D}}(\boldsymbol{x}) .
$$

Relaxation (for $\lambda_{t} \geqslant 0$)
\rightarrow Relaxation is tractable with vanilla CG!

Pseudocode:(A) Perform one CG step on (*); (B) Update λ_{t};
2. Algorithm design

Product space relaxation

$$
\text { minimize } f(x) \text { subject to } x \in \bigcap_{i \in I} C_{i} \text {, }
$$

admits the equivalent reformulation (via the $0-\infty$ indicator function ι_{D})

$$
\underset{x \in D \cap X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})=\underset{x \in X_{i \in I} C_{i}}{\operatorname{minimize}} f(A \boldsymbol{x})+\iota_{\boldsymbol{D}}(\boldsymbol{x}) .
$$

Relaxation (for $\lambda_{t} \geqslant 0$)
\rightarrow Relaxation is tractable with vanilla CG!
$\operatorname{minimize}_{\boldsymbol{x} \in X_{i \in 1} C_{i}} \underbrace{f(A \boldsymbol{x})+\lambda_{t} \operatorname{dist}_{\boldsymbol{D}}^{2}(\boldsymbol{x})}_{F_{\lambda_{t}}(x)} .(*) \quad \begin{aligned} \nabla F_{\lambda_{t}}(\boldsymbol{x}) & =A^{*} \nabla f(A \boldsymbol{x})+\lambda_{t}\left(\boldsymbol{x}-\operatorname{proj}_{\boldsymbol{D}} \boldsymbol{x}\right) \\ \mathrm{LMO}_{\times_{i \in 1}} c_{i}(\boldsymbol{x}) & =\left(\mathrm{LMO}_{C_{1}}\left(\boldsymbol{x}^{1}\right), \ldots, \operatorname{LMO}_{C_{m}}\left(\boldsymbol{x}^{m}\right)\right)\end{aligned}$
Pseudocode:(A) Perform one CG step on (*); (B) Update λ_{t}; (C) $t \leftarrow t+1$.

The algorithm

Split Conditional Gradient (SCG) Algorithm
Require: Point $x_{0} \in \sum_{i \in I} \omega_{i} C_{i}$, smooth function f, weights $\left.\left.\left\{\omega_{i}\right\}_{i \in I} \subset\right] 0,1\right]$ such that $\sum_{i \in I} \omega_{i}=1$
for $t=0,1$ to \ldots do
2: Choose penalty parameter $\left.\lambda_{t} \in\right] 0,+\infty[$
3: Choose step size $\left.\left.\gamma_{t} \in\right] 0,1\right]$
4: $\quad g_{t} \leftarrow \nabla f\left(x_{t}\right)$
5: \quad for $i=1$ to m do
6: $\quad \boldsymbol{v}_{t}^{i} \leftarrow \mathrm{LMO}_{i}\left(g_{t}+\lambda_{t}\left(\boldsymbol{x}_{t}^{i}-x_{t}\right)\right)$
$\boldsymbol{x}_{t+1}^{i} \leftarrow \boldsymbol{x}_{t}^{i}+\gamma_{t}\left(\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right)$
end for
$x_{t+1} \leftarrow \sum_{i \in I} \omega_{i} \boldsymbol{x}_{t+1}^{i}$
end for

Practical advantages:
\rightarrow Uses individual LMOs
$\rightarrow m$ LMO calls per iteration.
\rightarrow Line 9: speeds up feasibility.

The algorithm

Split Conditional Gradient (SCG) Algorithm
Require: Point $x_{0} \in \sum_{i \in I} \omega_{i} C_{i}$, smooth function f, weights $\left.\left.\left\{\omega_{i}\right\}_{i \in I} \subset\right] 0,1\right]$ such that $\sum_{i \in I} \omega_{i}=1$
for $t=0,1$ to \ldots do
2: Choose penalty parameter $\left.\lambda_{t} \in\right] 0,+\infty[$
3: \quad Choose step size $\left.\left.\gamma_{t} \in\right] 0,1\right]$
4: $\quad g_{t} \leftarrow \nabla f\left(x_{t}\right)$
5: \quad for $i=1$ to m do
6: $\quad \boldsymbol{v}_{t}^{i} \leftarrow \operatorname{LMO}_{i}\left(g_{t}+\lambda_{t}\left(\boldsymbol{x}_{t}^{i}-x_{t}\right)\right)$
$\boldsymbol{x}_{t+1}^{i} \leftarrow \boldsymbol{x}_{t}^{i}+\gamma_{t}\left(\boldsymbol{v}_{t}^{i}-\boldsymbol{x}_{t}^{i}\right)$
end for
$x_{t+1} \leftarrow \sum_{i \in I} \omega_{i} x_{t+1}^{i}$
end for

Practical advantages:
\rightarrow Uses individual LMOs
$\rightarrow m$ LMO calls per iteration.
\rightarrow Line 9: speeds up feasibility.
Question:
\rightarrow Does it actually solve (\star) ?
TL;DR: Yes.
$\gamma_{t}=\mathcal{O}(1 / \sqrt{t})$ and $\lambda_{t}=\mathcal{O}(\ln t)$ work.
2. Algorithm design

Why does averaging help?

$$
\boldsymbol{x} \in \boldsymbol{D} \cap \underset{i \in I}{X} C_{i} \Rightarrow A \boldsymbol{x} \in \bigcap_{i \in I} C_{i}
$$

so a feasible average is easier to
satisfy than a feasible component!
2. Algorithm design Why does averaging help?

$$
\boldsymbol{x} \in \boldsymbol{D} \cap \underset{i \in I}{X} C_{i} \Rightarrow A \boldsymbol{x} \in \bigcap_{i \in I} C_{i}
$$

so a feasible average is easier to satisfy than a feasible component!

Proposition

$A x_{t} \in \bigcap_{i \in I} C_{i}$ if and only if $\operatorname{proj}_{D}(x) \in X_{i \in I} C_{i}$.

Why does averaging help?

$$
\boldsymbol{x} \in \boldsymbol{D} \cap \underset{i \in I}{X} C_{i} \Rightarrow A \boldsymbol{x} \in \bigcap_{i \in I} C_{i}
$$

so a feasible average is easier to satisfy than a feasible component!

Proposition

$A x_{t} \in \bigcap_{i \in I} C_{i}$ if and only if $\operatorname{proj}_{D}(\boldsymbol{x}) \in X_{i \in I} C_{i}$.

Figure: Darker shaded region $\left\{\boldsymbol{x} \in \mathcal{H} \mid A \boldsymbol{x} \in \bigcap_{i \in I} C_{i}\right\}$ contains the segment $\boldsymbol{D} \cap \times_{i \in I} C_{i}$.

Splitting the Conditional Gradient Algorithm

1. Motivation: History of splitting and CG / "Frank-Wolfe" algorithms
2. Algorithm design
3. Convergence guarantees

Convergence of the subproblems

Proposition (Convergence of relaxed problems)

Let $\left(\lambda_{t}\right)_{t \in \mathbb{N}} \rightarrow+\infty$. For every $t \in \mathbb{N}$, set $F_{t}=f \circ A+\lambda_{t} \operatorname{dist}_{D}^{2} / 2+\iota_{X_{i \in l}} c_{i}$. Then

1. F_{t} converges pointwise to $f \circ A+\iota_{\boldsymbol{D} \cap \times_{i \in I}} c_{i}$.
2. F_{t} converges epigraphicallly to $f \circ A+\iota_{D \cap} \times \times_{i \in I} C_{i}$.
3. ∂F_{n} converges graphically to $\partial\left(f \circ A+\iota_{\boldsymbol{D} \cap \times_{i \in I} C_{i}}\right)$.
where epigraphical and graphical convergence are in, e.g., [Rockafellar/Wets, '09].
Proposition (Convergence of optimal values for $\lambda_{t} \nearrow+\infty$)

$$
\lim _{t \rightarrow+\infty}\left(\inf _{x \in X_{i \in 1} c_{i}} F_{\lambda_{t}}(x)\right) \rightarrow \inf _{x \in X_{i \in 1} c_{i}}\left(\lim _{t \rightarrow \infty} F_{\lambda_{t}}(x)\right)=\inf _{x \in \bigcap_{i \in 1} c_{i}} f(x)
$$

Convex case

Theorem (Convex convergence)
Let f be convex and L_{f}-smooth, let $\left(C_{i}\right)_{i \in I}$ be nonempty compact convex subsets of \mathcal{H} with diameters $\left\{R_{i}\right\}_{i \in I} \subset\left[0,+\infty\left[\right.\right.$ such that $\bigcap_{i \in I} C_{i} \neq \varnothing$, and for every $\lambda \geqslant 0$, set $F_{\lambda}: \boldsymbol{x} \mapsto f(A \boldsymbol{x})+\frac{\lambda}{2} \operatorname{dist}_{\boldsymbol{D}}^{2}(\boldsymbol{x})$. Let $\lambda_{0}>0$ and $\lambda_{t+1}=\lambda_{t}+(\sqrt{t}+2)^{-2}$ and $\gamma_{t}=2 /(\sqrt{t}+2)$. Then

$$
0 \leqslant F_{\lambda_{t}}\left(x_{t}\right)-F_{\lambda_{t}}\left(x_{t}^{*}\right) \leqslant \mathcal{O}\left(\frac{\ln t}{\sqrt{t}}\right)
$$

In particular,

1. $F_{\lambda_{t}}\left(x_{t}\right) \rightarrow \inf _{x \in \bigcap}^{\bigcap_{i \in I}} c_{i} f(x)$ and $\operatorname{dist}_{\boldsymbol{D}}\left(x_{t}\right) \rightarrow 0$.
2. Every accumulation point \boldsymbol{x}_{∞} of $\left(\boldsymbol{x}_{t}\right)_{t \in \mathbb{N}}$ produces a solution $A \boldsymbol{x}_{\infty} \in \bigcap_{i \in I} C_{i}$ such that $f\left(A x_{\infty}\right)=\inf _{x \in \bigcap}^{\bigcap_{i \in 1}} c_{i} f(x)$.

Convex case

Theorem (Convex convergence)
Let f be convex and L_{f}-smooth, let $\left(C_{i}\right)_{i \in I}$ be nonempty compact convex subsets of \mathcal{H} with diameters $\left\{R_{i}\right\}_{i \in I} \subset\left[0,+\infty\left[\right.\right.$ such that $\bigcap_{i \in I} C_{i} \neq \varnothing$, and for every $\lambda \geqslant 0$, set $F_{\lambda}: \boldsymbol{x} \mapsto f(A \boldsymbol{x})+\frac{\lambda}{2} \operatorname{dist}_{\boldsymbol{D}}^{2}(\boldsymbol{x})$. Let $\lambda_{0}>0$ and $\lambda_{t+1}=\lambda_{t}+(\sqrt{t}+2)^{-2}$ and $\gamma_{t}=2 /(\sqrt{t}+2)$. Then

$$
0 \leqslant F_{\lambda_{t}}\left(x_{t}\right)-F_{\lambda_{t}}\left(x_{t}^{*}\right) \leqslant \mathcal{O}\left(\frac{\ln t}{\sqrt{t}}\right)
$$

In particular,

1. $F_{\lambda_{t}}\left(x_{t}\right) \rightarrow \inf _{x \in \bigcap}^{\bigcap_{i \in I}} c_{i} f(x)$ and $\operatorname{dist}_{\boldsymbol{D}}\left(x_{t}\right) \rightarrow 0$.
2. Every accumulation point \boldsymbol{x}_{∞} of $\left(\boldsymbol{x}_{t}\right)_{t \in \mathbb{N}}$ produces a solution $A \boldsymbol{x}_{\infty} \in \bigcap_{i \in I} C_{i}$ such that $f\left(A x_{\infty}\right)=\inf _{x \in \bigcap}^{\bigcap_{i \in 1}} c_{i} f(x)$.

We believe this rate can be improved!

Theorem (Nonconvex convergence)
Let f be L_{f}-smooth, let $\left(C_{i}\right)_{i \in I}$ be nonempty compact convex subsets of \mathcal{H} with diameters $\left\{R_{i}\right\}_{i \in I} \subset\left[0,+\infty\left[\right.\right.$ such that $\bigcap_{i \in I} C_{i} \neq \varnothing$, and for every $\lambda \geqslant 0$, set $F_{\lambda}: \boldsymbol{x} \mapsto f(A \boldsymbol{x})+\frac{\lambda}{2} \operatorname{dist}_{\boldsymbol{D}}^{2}(\boldsymbol{x})$. Let $\lambda_{t}=\sum_{k=0}^{t-1} 1 /(k+1)$ and $\gamma_{t}=1 / \sqrt{t}$. Then,

$$
0 \leqslant \frac{1}{t} \sum_{k=0}^{t-1}\left\langle\nabla F_{\lambda_{k}}\left(\boldsymbol{x}_{k}\right) \mid \boldsymbol{x}_{k}-\boldsymbol{v}_{k}\right\rangle \leqslant \mathcal{O}\left(\frac{\ln t}{\sqrt{t}}+\frac{1}{\sqrt{t}}\right)
$$

In particular, there exists a subsequence $\left(t_{k}\right)_{k \in \mathbb{N}}$ such that

1. $\left(\left\langle\nabla F_{\lambda_{t_{k}}}\left(\boldsymbol{x}_{t_{k}}\right) \mid \boldsymbol{x}_{t_{k}}-\boldsymbol{v}_{t_{k}}\right\rangle\right)_{k \in \mathbb{N}} \rightarrow 0$ and $\operatorname{dist}_{\boldsymbol{D}}\left(\boldsymbol{x}_{t_{k}}\right) \rightarrow 0$.
2. Furthermore, every accumulation point \boldsymbol{x}_{∞} of $\left(\boldsymbol{x}_{t_{k}}\right)_{k \in \mathbb{N}}$ yields a stationary point $A \boldsymbol{x}_{\infty} \in \bigcap_{i \in I} C_{i}$ of the problem (\star).

Best-known rates / Future work

	$m=2$	$m>2$	f convex	f nonconvex
[Pedregosa et al., '20]	x	x	$\mathcal{O}\left(\frac{1}{t}\right)$	$\mathcal{O}\left(\frac{1}{\sqrt{t}}\right)$
[Gidel et al. '18]	\checkmark	x	$\mathcal{O}\left(\frac{1}{t}\right)$	x
[Yurtsever et al. '19], [Lan et al., '21] ${ }^{(V)}$	\checkmark	\checkmark	$\mathcal{O}\left(\frac{1}{\sqrt{t}}\right)$	x
[ZW/Pokutta '23]	\checkmark	\checkmark	\checkmark	$\mathcal{O}\left(\frac{\ln t}{\sqrt{t}}\right)$

Best-known rates / Future work

	$m=2$	$m>2$	f convex	f nonconvex
[Pedregosa et al., '20]	\mathbf{x}	\mathbf{x}	$\mathcal{O}\left(\frac{1}{t}\right)$	$\mathcal{O}\left(\frac{1}{\sqrt{t}}\right)$
[Gidel et al. '18]	\checkmark	\mathbf{x}	$\mathcal{O}\left(\frac{1}{t}\right)$	\mathbf{x}
[Yurtsever et al. '19],			$\mathcal{O}\left(\frac{1}{\sqrt{t}}\right)$	\mathbf{x}
[Lan et al., '21] ${ }^{(\vee)}$		\checkmark	\mathcal{O}	
[ZW/Pokutta '23]	\checkmark	\checkmark	\checkmark	$\mathcal{O}\left(\frac{\ln t}{\sqrt{t}}\right)$

Usually, there is a quadratic speed-up from nonconvex and convex rates.

Best-known rates / Future work

	$m=2$	$m>2$	f convex	f nonconvex	
[Pedregosa et al., '20]	X	x	$\mathcal{O}\left(\frac{1}{t}\right)$	$\mathcal{O}\left(\frac{1}{\sqrt{t}}\right)$	
[Gidel et al. '18]	\checkmark	x	$\mathcal{O}\left(\frac{1}{t}\right)$	x	\longleftarrow
[Yurtsever et al. '19], [Lan et al., '21] ${ }^{(\checkmark)}$	\checkmark	\checkmark	$\mathcal{O}\left(\frac{1}{\sqrt{t}}\right)$	x	\longleftarrow
[ZW/Pokutta '23]	\checkmark	\checkmark	\checkmark	$\mathcal{O}\left(\frac{\ln t}{\sqrt{t}}\right)$	

Usually, there is a quadratic speed-up from nonconvex and convex rates.
Is the gap between $m=2$ and $m>2$ actually necessary?

Thank you for your attention!

ZUSE INSTITU
BERLIN

3．Convergence guarantees

References

國 G．Braun，S．Pokutta，and R．Weismantel，Alternating linear minimization：revisiting von Neumann＇s alternating projections preprint，arXiv： 2212.02933

R．Díaz Millán and O．P．Ferreira and L．F．Prudente，Alternating conditional gradient method for convex feasibility problems
Comput．Optim．Appl．，vol．80，pp．245－269， 2021
G．Gidel，F．Pedregosa，and S．Lacoste－Julien，Frank－Wolfe splitting via augmented Lagrangian Method
Proc．AISTATS，pp．1456－1465， 2018.
國 N．He and Z．Harchaoui，Semi－proximal mirror－prox for nonsmooth composite minimization Proc．NeurlPS，vol．28， 2015
T－V．Kolmogorov and T．Pock，One－sided Frank－Wolfe algorithms for saddle problems Proc．ICML，PMLR，vol．139，pp．5665－5675， 2021
國 G．Lan，E．Romeijn，and Z．Zhou，Conditional gradient methods for convex optimization with general affine and nonlinear constraints

3. Convergence guarantees

Refrences

围 Y-F. Liu, X. Liu, and S. Ma, On the nonergodic convergence rate of an inexact augmented Lagrangian framework for composite convex programming Math. Oper. Res., vol. 44, no. 2 pp. 632-650, 2019
R- Fedregosa, G. Negiar, A. Askari, and M. Jaggi, Linearly convergent Frank-Wolfe with backtracking line-search Proc. AISTATS, pp. 1-10, 2020.
R. T. Rockafellar, and R. J-B Wets, Variational Analysis

Springer, 2009
A. Silveti-Falls, C. Molinari, and J. Fadili, Linearly convergent Frank-Wolfe with backtracking line-search
SIAM J. Optim., vol. 30, no. 4, pp. 2687-2725, 2020.
A. Yurtsever, O. Fercoq, and V. Cevher, A conditional-gradient-based augmented Lagrangian framework
Proc. ICML, pp. 7272-7281, 2019.

[^0]: Projecting onto \boldsymbol{D} amounts to computing an average

