
1

Splitting the
Conditional Gradient
Algorithm
INFORMS Annual Meeting
Zev Woodstock
October 2023

mailto:woodstock@zib.de

2

Results are joint work with...

Sebastian Pokutta
ZIB & Technische
Universität Berlin

Interactive Optimization & Learning (IOL) Lab
iol.zib.de

mailto:pokutta@zib.de
https://iol.zib.de/

3

Splitting the Conditional Gradient Algorithm

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

2. Algorithm design

3. Convergence guarantees

4

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Algorithms for one constraint
Classical problem setup

Given a smooth function f : Rn → R and a nonempty compact convex set C ,

minimize f (x) subject to x ∈ C . (1)

Two iterative first-order algorithms for solving (1) differ in how x ∈ C is enforced.

Projected gradient descent: Requires
the projection onto C , projC :

y 7→ arg min
x∈C

‖x − y‖2 (PROJ)

Conditional gradient: Requires the
linear minimization oracle of C , LMOC :

y 7→ p ∈ arg min
x∈C
〈y | x〉 (LMO)

[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, (PROJ) is more expensive than (LMO).
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

4

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Algorithms for one constraint
Classical problem setup

Given a smooth function f : Rn → R and a nonempty compact convex set C ,

minimize f (x) subject to x ∈ C . (1)

Two iterative first-order algorithms for solving (1) differ in how x ∈ C is enforced.

Projected gradient descent: Requires
the projection onto C , projC :

y 7→ arg min
x∈C

‖x − y‖2 (PROJ)

Conditional gradient: Requires the
linear minimization oracle of C , LMOC :

y 7→ p ∈ arg min
x∈C
〈y | x〉 (LMO)

[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, (PROJ) is more expensive than (LMO).
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

4

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Algorithms for one constraint
Classical problem setup

Given a smooth function f : Rn → R and a nonempty compact convex set C ,

minimize f (x) subject to x ∈ C . (1)

Two iterative first-order algorithms for solving (1) differ in how x ∈ C is enforced.

Projected gradient descent: Requires
the projection onto C , projC :

y 7→ arg min
x∈C

‖x − y‖2 (PROJ)

Conditional gradient: Requires the
linear minimization oracle of C , LMOC :

y 7→ p ∈ arg min
x∈C
〈y | x〉 (LMO)

[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, (PROJ) is more expensive than (LMO).
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

4

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Algorithms for one constraint
Classical problem setup

Given a smooth function f : Rn → R and a nonempty compact convex set C ,

minimize f (x) subject to x ∈ C . (1)

Two iterative first-order algorithms for solving (1) differ in how x ∈ C is enforced.

Projected gradient descent: Requires
the projection onto C , projC :

y 7→ arg min
x∈C

‖x − y‖2 (PROJ)

Conditional gradient: Requires the
linear minimization oracle of C , LMOC :

y 7→ p ∈ arg min
x∈C
〈y | x〉 (LMO)

[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, (PROJ) is more expensive than (LMO).
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

4

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Algorithms for one constraint
Classical problem setup

Given a smooth function f : Rn → R and a nonempty compact convex set C ,

minimize f (x) subject to x ∈ C . (1)

Two iterative first-order algorithms for solving (1) differ in how x ∈ C is enforced.

Projected gradient descent: Requires
the projection onto C , projC :

y 7→ arg min
x∈C

‖x − y‖2 (PROJ)

Conditional gradient: Requires the
linear minimization oracle of C , LMOC :

y 7→ p ∈ arg min
x∈C
〈y | x〉 (LMO)

[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, (PROJ) is more expensive than (LMO).
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

4

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Algorithms for one constraint
Classical problem setup

Given a smooth function f : Rn → R and a nonempty compact convex set C ,

minimize f (x) subject to x ∈ C . (1)

Two iterative first-order algorithms for solving (1) differ in how x ∈ C is enforced.

Projected gradient descent: Requires
the projection onto C , projC :

y 7→ arg min
x∈C

‖x − y‖2 (PROJ)

Conditional gradient: Requires the
linear minimization oracle of C , LMOC :

y 7→ p ∈ arg min
x∈C
〈y | x〉 (LMO)

[Combettes/Pokutta, ’21]: For many constraints︸ ︷︷ ︸, (PROJ) is more expensive than (LMO).
(e.g., nuclear norm ball, `1 ball, probability simplex, Birkhoff polytope, general LP, . . .)

5

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

What about multiple constraints?
Splitting problem setup
Given a smooth function f : Rn → R and compact convex sets (Ci)i∈I (I = {1, . . . ,m}),

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

Issue: Computing the projection or LMO for ⋂i∈I Ci is prohibitively expensive.
Projection-based splitting algorithms (e.g., Forward-Backward, Douglas-Rachford,
projective splitting, etc.), enforce constraints via projections onto the individual sets

Use projC1 , projC2 , . . . instead of proj(⋂i∈I Ci)

Simpler tools → previously intractable problems become solvable on a larger scale.

5

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

What about multiple constraints?
Splitting problem setup
Given a smooth function f : Rn → R and compact convex sets (Ci)i∈I (I = {1, . . . ,m}),

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

Issue: Computing the projection or LMO for ⋂i∈I Ci is prohibitively expensive.
Projection-based splitting algorithms (e.g., Forward-Backward, Douglas-Rachford,
projective splitting, etc.), enforce constraints via projections onto the individual sets

Use projC1 , projC2 , . . . instead of proj(⋂i∈I Ci)

Simpler tools → previously intractable problems become solvable on a larger scale.

5

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

What about multiple constraints?
Splitting problem setup
Given a smooth function f : Rn → R and compact convex sets (Ci)i∈I (I = {1, . . . ,m}),

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

Issue: Computing the projection or LMO for ⋂i∈I Ci is prohibitively expensive.
Projection-based splitting algorithms (e.g., Forward-Backward, Douglas-Rachford,
projective splitting, etc.), enforce constraints via projections onto the individual sets

Use projC1 , projC2 , . . . instead of proj(⋂i∈I Ci)

Simpler tools → previously intractable problems become solvable on a larger scale.

5

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

What about multiple constraints?
Splitting problem setup
Given a smooth function f : Rn → R and compact convex sets (Ci)i∈I (I = {1, . . . ,m}),

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

Applications: data science, matrix decomposition, quantum computing, combinatorial graph theory

Issue: Computing the projection or LMO for ⋂i∈I Ci is prohibitively expensive.
Projection-based splitting algorithms (e.g., Forward-Backward, Douglas-Rachford,
projective splitting, etc.), enforce constraints via projections onto the individual sets

Use projC1 , projC2 , . . . instead of proj(⋂i∈I Ci)

Simpler tools → previously intractable problems become solvable on a larger scale.

6

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

What if projections are too expensive?

LMO-based splitting algorithms, enforce constraints
via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂i∈I Ci)

Relatively little has been done in this field.

→ Unlike projections, LMOs are discontinuous.
→ “CTRL+F / Replace proj with LMO” fails.
→ “State-of-the-art” relies on inexact prox-based

algorithms (mostly Augmented Lagrangians).

LMO⋂
i∈I Ci

LMOC1 , . . . LMOCm

6

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

What if projections are too expensive?

LMO-based splitting algorithms, enforce constraints
via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂i∈I Ci)

Relatively little has been done in this field.

→ Unlike projections, LMOs are discontinuous.
→ “CTRL+F / Replace proj with LMO” fails.
→ “State-of-the-art” relies on inexact prox-based

algorithms (mostly Augmented Lagrangians).

LMO⋂
i∈I Ci

LMOC1 , . . . LMOCm

6

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

What if projections are too expensive?

LMO-based splitting algorithms, enforce constraints
via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂i∈I Ci)

Relatively little has been done in this field.

→ Unlike projections, LMOs are discontinuous.
→ “CTRL+F / Replace proj with LMO” fails.
→ “State-of-the-art” relies on inexact prox-based

algorithms (mostly Augmented Lagrangians).

LMO⋂
i∈I Ci

LMOC1 , . . . LMOCm

6

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

What if projections are too expensive?

LMO-based splitting algorithms, enforce constraints
via LMOs for the individual sets

Use LMOC1 , LMOC2 , . . . instead of LMO(⋂i∈I Ci)

Relatively little has been done in this field.

→ Unlike projections, LMOs are discontinuous.
→ “CTRL+F / Replace proj with LMO” fails.
→ “State-of-the-art” relies on inexact prox-based

algorithms (mostly Augmented Lagrangians).

LMO⋂
i∈I Ci

LMOC1 , . . . LMOCm

7

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Previous work
“Use a CG subroutine to approximate a projection” ⇒ high iteration complexity
[He/Harchaoui, ’15], [Liu et al., ’19] [Millan et al., ’21], [Kolmogorov/Pock, ’21]
Currently, lowest iteration complexity is O(m): one LMO per set.

m = 2 m > 2 f convex f nonconvex Analysis
[Pedregosa et al., ’20] 8 8 4 4 CG
[Braun et al., ’22] 4 8 8(f = 0) 8 CG
[Gidel et al. ’18] 4 8 4 8 AL+CG

[Yurtsever et al. ’19],
[Silvetti-Falls et al. ’20] 4 4 4 8 AL+CG

[Lan et al., ’21] (4) (4) 4 8 CG
[ZW/Pokutta ’23] 4 4 4 4 CG

(4)- requires additional structure on (Ci)i∈I

7

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Previous work
“Use a CG subroutine to approximate a projection” ⇒ high iteration complexity
[He/Harchaoui, ’15], [Liu et al., ’19] [Millan et al., ’21], [Kolmogorov/Pock, ’21]
Currently, lowest iteration complexity is O(m): one LMO per set.

m = 2 m > 2 f convex f nonconvex Analysis
[Pedregosa et al., ’20] 8 8 4 4 CG
[Braun et al., ’22] 4 8 8(f = 0) 8 CG
[Gidel et al. ’18] 4 8 4 8 AL+CG

[Yurtsever et al. ’19],
[Silvetti-Falls et al. ’20] 4 4 4 8 AL+CG

[Lan et al., ’21] (4) (4) 4 8 CG
[ZW/Pokutta ’23] 4 4 4 4 CG

(4)- requires additional structure on (Ci)i∈I

7

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Previous work
“Use a CG subroutine to approximate a projection” ⇒ high iteration complexity
[He/Harchaoui, ’15], [Liu et al., ’19] [Millan et al., ’21], [Kolmogorov/Pock, ’21]
Currently, lowest iteration complexity is O(m): one LMO per set.

m = 2 m > 2 f convex f nonconvex Analysis
[Pedregosa et al., ’20] 8 8 4 4 CG
[Braun et al., ’22] 4 8 8(f = 0) 8 CG
[Gidel et al. ’18] 4 8 4 8 AL+CG

[Yurtsever et al. ’19],
[Silvetti-Falls et al. ’20] 4 4 4 8 AL+CG

[Lan et al., ’21] (4) (4) 4 8 CG
[ZW/Pokutta ’23] 4 4 4 4 CG

(4)- requires additional structure on (Ci)i∈I

7

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Previous work
“Use a CG subroutine to approximate a projection” ⇒ high iteration complexity
[He/Harchaoui, ’15], [Liu et al., ’19] [Millan et al., ’21], [Kolmogorov/Pock, ’21]
Currently, lowest iteration complexity is O(m): one LMO per set.

m = 2 m > 2 f convex f nonconvex Analysis
[Pedregosa et al., ’20] 8 8 4 4 CG
[Braun et al., ’22] 4 8 8(f = 0) 8 CG
[Gidel et al. ’18] 4 8 4 8 AL+CG

[Yurtsever et al. ’19],
[Silvetti-Falls et al. ’20] 4 4 4 8 AL+CG

[Lan et al., ’21] (4) (4) 4 8 CG
[ZW/Pokutta ’23] 4 4 4 4 CG

(4)- requires additional structure on (Ci)i∈I

7

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Previous work
“Use a CG subroutine to approximate a projection” ⇒ high iteration complexity
[He/Harchaoui, ’15], [Liu et al., ’19] [Millan et al., ’21], [Kolmogorov/Pock, ’21]
Currently, lowest iteration complexity is O(m): one LMO per set.

m = 2 m > 2 f convex f nonconvex Analysis
[Pedregosa et al., ’20] 8 8 4 4 CG
[Braun et al., ’22] 4 8 8(f = 0) 8 CG
[Gidel et al. ’18] 4 8 4 8 AL+CG

[Yurtsever et al. ’19],
[Silvetti-Falls et al. ’20] 4 4 4 8 AL+CG

[Lan et al., ’21] (4) (4) 4 8 CG
[ZW/Pokutta ’23] 4 4 4 4 CG

(4)- requires additional structure on (Ci)i∈I

7

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

Previous work
“Use a CG subroutine to approximate a projection” ⇒ high iteration complexity
[He/Harchaoui, ’15], [Liu et al., ’19] [Millan et al., ’21], [Kolmogorov/Pock, ’21]
Currently, lowest iteration complexity is O(m): one LMO per set.

m = 2 m > 2 f convex f nonconvex Analysis
[Pedregosa et al., ’20] 8 8 4 4 CG
[Braun et al., ’22] 4 8 8(f = 0) 8 CG
[Gidel et al. ’18] 4 8 4 8 AL+CG

[Yurtsever et al. ’19],
[Silvetti-Falls et al. ’20] 4 4 4 8 AL+CG

[Lan et al., ’21] (4) (4) 4 8 CG
[ZW/Pokutta ’23] 4 4 4 4 CG

(4)- requires additional structure on (Ci)i∈I

8

Splitting the Conditional Gradient Algorithm

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

2. Algorithm design

3. Convergence guarantees

9

2. Algorithm design

Tools from the projection literature
Product space construction

• {ωi}i∈I ⊂]0, 1], ∑i∈I ωi = 1 (e.g., ωi ≡ 1/m)
• H = Rn and H =×i∈I H, with inner product ∑i∈I ωi〈· | ·〉
• Diagonal subspace of H: D = {(x , . . . , x) | x ∈ H}
• Block-averaging operator and its adjoint:

A : H→ H : (x1, . . . , xm) 7→
∑
i∈I

ωix i A∗ : x 7→ (x , . . . , x).

Projecting onto D amounts to computing an average

projD x = A∗A = A∗
∑
i∈I

ωix i .

9

2. Algorithm design

Tools from the projection literature
Product space construction

• {ωi}i∈I ⊂]0, 1], ∑i∈I ωi = 1 (e.g., ωi ≡ 1/m)
• H = Rn and H =×i∈I H, with inner product ∑i∈I ωi〈· | ·〉
• Diagonal subspace of H: D = {(x , . . . , x) | x ∈ H}
• Block-averaging operator and its adjoint:

A : H→ H : (x1, . . . , xm) 7→
∑
i∈I

ωix i A∗ : x 7→ (x , . . . , x).

Projecting onto D amounts to computing an average

projD x = A∗A = A∗
∑
i∈I

ωix i .

9

2. Algorithm design

Tools from the projection literature
Product space construction

• {ωi}i∈I ⊂]0, 1], ∑i∈I ωi = 1 (e.g., ωi ≡ 1/m)
• H = Rn and H =×i∈I H, with inner product ∑i∈I ωi〈· | ·〉
• Diagonal subspace of H: D = {(x , . . . , x) | x ∈ H}
• Block-averaging operator and its adjoint:

A : H→ H : (x1, . . . , xm) 7→
∑
i∈I

ωix i A∗ : x 7→ (x , . . . , x).

Projecting onto D amounts to computing an average

projD x = A∗A = A∗
∑
i∈I

ωix i .

10

2. Algorithm design

Tools from the projection literature

Product space construction

• H =×i∈I H
• D = {(x , . . . , x) | x ∈ H} ⊂H

Proposition (Reformulation of
⋂

i∈I Ci)

x ∈ D ∩×i∈I Ci if and only if
x = (x , . . . , x) and x ∈

⋂
i∈I Ci

C2

C1

D

D\(C1 × C2)

H

H

10

2. Algorithm design

Tools from the projection literature

Product space construction

• H =×i∈I H
• D = {(x , . . . , x) | x ∈ H} ⊂H

Proposition (Reformulation of
⋂

i∈I Ci)

x ∈ D ∩×i∈I Ci if and only if
x = (x , . . . , x) and x ∈

⋂
i∈I Ci

C2

C1

D

D\(C1 × C2)

H

H

11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.

11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.

11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.

11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.

11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.

11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.

11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.

11

2. Algorithm design

Product space relaxation

minimize f (x) subject to x ∈
⋂
i∈I

Ci , (?)

admits the equivalent reformulation (via the 0-∞ indicator function ιD)

minimize
x∈D∩×i∈I Ci

f (Ax) = minimize
x∈×i∈I Ci

f (Ax) + ιD(x).

Relaxation (for λt > 0)

minimize
x∈×i∈I Ci

f (Ax) + λtdist2
D(x)︸ ︷︷ ︸

Fλt (x)

. (∗)
→ Relaxation is tractable with vanilla CG!

∇Fλt (x) = A∗∇f (Ax) + λt(x − projDx)
LMO×i∈I Ci (x) = (LMOC1(x1), . . . , LMOCm (xm))

Pseudocode:(A) Perform one CG step on (∗); (B) Update λt ; (C) t ← t + 1.

12

2. Algorithm design

The algorithm

Split Conditional Gradient (SCG) Algorithm

Require: Point x0 ∈
∑

i∈I ωiCi , smooth function f ,
weights {ωi}i∈I ⊂]0, 1] such that ∑i∈I ωi = 1

1: for t = 0, 1 to . . . do
2: Choose penalty parameter λt ∈]0,+∞[
3: Choose step size γt ∈]0, 1]
4: gt ← ∇f (xt)
5: for i = 1 to m do
6: v i

t ← LMOi (gt + λt(x i
t − xt))

7: x i
t+1 ← x i

t + γt(v i
t − x i

t)
8: end for
9: xt+1 ←

∑
i∈I ωix i

t+1
10: end for

Practical advantages:
→ Uses individual LMOs
→ m LMO calls per iteration.
→ Line 9: speeds up feasibility.

Question:
→ Does it actually solve (?)?
TL;DR: Yes.
γt = O(1/

√
t) and λt = O(ln t)

work.

12

2. Algorithm design

The algorithm

Split Conditional Gradient (SCG) Algorithm

Require: Point x0 ∈
∑

i∈I ωiCi , smooth function f ,
weights {ωi}i∈I ⊂]0, 1] such that ∑i∈I ωi = 1

1: for t = 0, 1 to . . . do
2: Choose penalty parameter λt ∈]0,+∞[
3: Choose step size γt ∈]0, 1]
4: gt ← ∇f (xt)
5: for i = 1 to m do
6: v i

t ← LMOi (gt + λt(x i
t − xt))

7: x i
t+1 ← x i

t + γt(v i
t − x i

t)
8: end for
9: xt+1 ←

∑
i∈I ωix i

t+1
10: end for

Practical advantages:
→ Uses individual LMOs
→ m LMO calls per iteration.
→ Line 9: speeds up feasibility.

Question:
→ Does it actually solve (?)?
TL;DR: Yes.
γt = O(1/

√
t) and λt = O(ln t)

work.

13

2. Algorithm design

Why does averaging help?

x ∈ D ∩×
i∈I

Ci ⇒ Ax ∈
⋂
i∈I

Ci ,

so a feasible average is easier to
satisfy than a feasible component!

Proposition

Axt ∈
⋂

i∈I Ci if and only if
projD(x) ∈×i∈I Ci .

13

2. Algorithm design

Why does averaging help?

x ∈ D ∩×
i∈I

Ci ⇒ Ax ∈
⋂
i∈I

Ci ,

so a feasible average is easier to
satisfy than a feasible component!

Proposition

Axt ∈
⋂

i∈I Ci if and only if
projD(x) ∈×i∈I Ci .

13

2. Algorithm design

Why does averaging help?

x ∈ D ∩×
i∈I

Ci ⇒ Ax ∈
⋂
i∈I

Ci ,

so a feasible average is easier to
satisfy than a feasible component!

Proposition

Axt ∈
⋂

i∈I Ci if and only if
projD(x) ∈×i∈I Ci .

C2

C1

D
C1 × C2

D\(C1 × C2)

H

H

D (x)

Figure: Darker shaded region {x ∈H |Ax ∈
⋂

i∈I Ci}
contains the segment D ∩×i∈I Ci .

14

Splitting the Conditional Gradient Algorithm

1. Motivation: History of splitting and CG / “Frank-Wolfe” algorithms

2. Algorithm design

3. Convergence guarantees

15

3. Convergence guarantees

Convergence of the subproblems
Proposition (Convergence of relaxed problems)

Let (λt)t∈N → +∞. For every t ∈ N, set Ft = f ◦ A + λt dist2
D /2 + ι×i∈I Ci . Then

1. Ft converges pointwise to f ◦ A + ιD∩×i∈I Ci .

2. Ft converges epigraphicallly to f ◦ A + ιD∩×i∈I Ci .

3. ∂Fn converges graphically to ∂(f ◦ A + ιD∩×i∈I Ci).

where epigraphical and graphical convergence are in, e.g., [Rockafellar/Wets, ’09].

Proposition (Convergence of optimal values for λt ↗ +∞)

lim
t→+∞

(
inf

x∈×i∈I Ci
Fλt (x)

)
→ inf

x∈×i∈I Ci

(
lim

t→∞
Fλt (x)

)
= inf

x∈
⋂

i∈I Ci
f (x).

16

3. Convergence guarantees

Convex case
Theorem (Convex convergence)

Let f be convex and Lf -smooth, let (Ci)i∈I be nonempty compact convex subsets of H
with diameters {Ri}i∈I ⊂ [0,+∞[such that ⋂i∈I Ci 6= ∅, and for every λ > 0, set
Fλ : x 7→ f (Ax) + λ

2 dist2
D(x). Let λ0 > 0 and λt+1 = λt + (

√
t + 2)−2 and

γt = 2/(
√

t + 2). Then

0 6 Fλt (xt)− Fλt (x∗t) 6 O
(ln t√

t

)
In particular,

1. Fλt (xt)→ infx∈
⋂

i∈I Ci
f (x) and distD(xt)→ 0.

2. Every accumulation point x∞ of (xt)t∈N produces a solution Ax∞ ∈
⋂

i∈I Ci such
that f (Ax∞) = infx∈

⋂
i∈I Ci

f (x).

We believe this rate can be improved!

16

3. Convergence guarantees

Convex case
Theorem (Convex convergence)

Let f be convex and Lf -smooth, let (Ci)i∈I be nonempty compact convex subsets of H
with diameters {Ri}i∈I ⊂ [0,+∞[such that ⋂i∈I Ci 6= ∅, and for every λ > 0, set
Fλ : x 7→ f (Ax) + λ

2 dist2
D(x). Let λ0 > 0 and λt+1 = λt + (

√
t + 2)−2 and

γt = 2/(
√

t + 2). Then

0 6 Fλt (xt)− Fλt (x∗t) 6 O
(ln t√

t

)
In particular,

1. Fλt (xt)→ infx∈
⋂

i∈I Ci
f (x) and distD(xt)→ 0.

2. Every accumulation point x∞ of (xt)t∈N produces a solution Ax∞ ∈
⋂

i∈I Ci such
that f (Ax∞) = infx∈

⋂
i∈I Ci

f (x).

We believe this rate can be improved!

17

3. Convergence guarantees

Nonconvex case
Theorem (Nonconvex convergence)

Let f be Lf -smooth, let (Ci)i∈I be nonempty compact convex subsets of H with
diameters {Ri}i∈I ⊂ [0,+∞[such that ⋂i∈I Ci 6= ∅, and for every λ > 0, set
Fλ : x 7→ f (Ax) + λ

2 dist2
D(x). Let λt = ∑t−1

k=0 1/(k + 1) and γt = 1/
√

t. Then,

0 6
1
t

t−1∑
k=0

〈
∇Fλk (xk)

∣∣ xk − vk
〉
6 O

(ln t√
t

+ 1√
t

)
.

In particular, there exists a subsequence (tk)k∈N such that
1. (〈∇Fλtk

(xtk) | xtk − v tk 〉)k∈N → 0 and distD(xtk)→ 0.
2. Furthermore, every accumulation point x∞ of (xtk)k∈N yields a stationary point

Ax∞ ∈
⋂

i∈I Ci of the problem (?).

18

3. Convergence guarantees

Best-known rates / Future work

m = 2 m > 2 f convex f nonconvex
[Pedregosa et al., ’20] 8 8 O

(1
t

)
O
(1√

t

)
[Gidel et al. ’18] 4 8 O

(1
t

)
8

[Yurtsever et al. ’19],
[Lan et al., ’21](4) 4 4 O

(1√
t

)
8

[ZW/Pokutta ’23] 4 4 4 O
(ln t√

t

)
←−

Usually, there is a quadratic speed-up from nonconvex and convex rates.
Is the gap between m = 2 and m > 2 actually necessary?

18

3. Convergence guarantees

Best-known rates / Future work

m = 2 m > 2 f convex f nonconvex
[Pedregosa et al., ’20] 8 8 O

(1
t

)
O
(1√

t

)
←−

[Gidel et al. ’18] 4 8 O
(1

t

)
8

[Yurtsever et al. ’19],
[Lan et al., ’21](4) 4 4 O

(1√
t

)
8

[ZW/Pokutta ’23] 4 4 4 O
(ln t√

t

)
←−

Usually, there is a quadratic speed-up from nonconvex and convex rates.
Is the gap between m = 2 and m > 2 actually necessary?

18

3. Convergence guarantees

Best-known rates / Future work

m = 2 m > 2 f convex f nonconvex
[Pedregosa et al., ’20] 8 8 O

(1
t

)
O
(1√

t

)
[Gidel et al. ’18] 4 8 O

(1
t

)
8 ←−

[Yurtsever et al. ’19],
[Lan et al., ’21](4) 4 4 O

(1√
t

)
8 ←−

[ZW/Pokutta ’23] 4 4 4 O
(ln t√

t

)
←−

Usually, there is a quadratic speed-up from nonconvex and convex rates.
Is the gap between m = 2 and m > 2 actually necessary?

19

Thank you for your attention!

20

3. Convergence guarantees

References
G. Braun, S. Pokutta, and R. Weismantel, Alternating linear minimization: revisiting von
Neumann’s alternating projections
preprint, arXiv: 2212.02933

R. D́ıaz Millán and O. P. Ferreira and L. F. Prudente, Alternating conditional gradient method
for convex feasibility problems
Comput. Optim. Appl., vol. 80, pp. 245–269, 2021

G. Gidel, F. Pedregosa, and S. Lacoste-Julien, Frank-Wolfe splitting via augmented Lagrangian
Method
Proc. AISTATS, pp. 1456–1465, 2018.

N. He and Z. Harchaoui, Semi-proximal mirror-prox for nonsmooth composite minimization
Proc. NeurIPS, vol. 28, 2015

V. Kolmogorov and T. Pock, One-sided Frank-Wolfe algorithms for saddle problems
Proc. ICML, PMLR, vol. 139, pp. 5665–5675, 2021

G. Lan, E. Romeijn, and Z. Zhou, Conditional gradient methods for convex optimization with
general affine and nonlinear constraints
SIAM J. Optim., vol. 31, no. 3, pp. 2307–2339, 2021.

21

3. Convergence guarantees

Refrences
Y-F. Liu, X. Liu, and S. Ma, On the nonergodic convergence rate of an inexact augmented
Lagrangian framework for composite convex programming
Math. Oper. Res., vol. 44, no. 2 pp. 632–650, 2019

F. Pedregosa, G. Negiar, A. Askari, and M. Jaggi, Linearly convergent Frank-Wolfe with
backtracking line-search
Proc. AISTATS, pp. 1–10, 2020.

R. T. Rockafellar, and R. J-B Wets, Variational Analysis
Springer, 2009

A. Silveti-Falls, C. Molinari, and J. Fadili, Linearly convergent Frank-Wolfe with backtracking
line-search
SIAM J. Optim., vol. 30, no. 4, pp. 2687-2725, 2020.

A. Yurtsever, O. Fercoq, and V. Cevher, A conditional-gradient-based augmented Lagrangian
framework
Proc. ICML, pp. 7272–7281, 2019.

	Motivation: History of splitting and CG / ``Frank-Wolfe'' algorithms
	Algorithm design
	Convergence guarantees

